Skip to content

Estimator

TPOTEstimator

Bases: BaseEstimator

Source code in tpot2/tpot_estimator/estimator.py
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
class TPOTEstimator(BaseEstimator):
    def __init__(self,  scorers,
                        scorers_weights,
                        classification,
                        cv = 5,
                        other_objective_functions=[],
                        other_objective_functions_weights = [],
                        objective_function_names = None,
                        bigger_is_better = True,

                        hyperparameter_probability = 1,
                        hyper_node_probability = 0,
                        hyperparameter_alpha = 1,
                        max_size = np.inf,
                        linear_pipeline = False,
                        root_config_dict= 'Auto',
                        inner_config_dict=["selectors", "transformers"],
                        leaf_config_dict= None,
                        cross_val_predict_cv = 0,
                        categorical_features = None,
                        subsets = None,
                        memory = None,
                        preprocessing = False,
                        population_size = 50,
                        initial_population_size = None,
                        population_scaling = .5,
                        generations_until_end_population = 1,
                        generations = None,
                        max_time_seconds=3600,
                        max_eval_time_seconds=60*10,
                        validation_strategy = "none",
                        validation_fraction = .2,
                        disable_label_encoder = False,

                        #early stopping parameters
                        early_stop = None,
                        scorers_early_stop_tol = 0.001,
                        other_objectives_early_stop_tol =None,
                        threshold_evaluation_early_stop = None,
                        threshold_evaluation_scaling = .5,
                        selection_evaluation_early_stop = None,
                        selection_evaluation_scaling = .5,
                        min_history_threshold = 20,

                        #evolver parameters
                        survival_percentage = 1,
                        crossover_probability=.2,
                        mutate_probability=.7,
                        mutate_then_crossover_probability=.05,
                        crossover_then_mutate_probability=.05,
                        survival_selector = survival_select_NSGA2,
                        parent_selector = tournament_selection_dominated,

                        #budget parameters
                        budget_range = None,
                        budget_scaling = .5,
                        generations_until_end_budget = 1,
                        stepwise_steps = 5,


                        optuna_optimize_pareto_front = False,
                        optuna_optimize_pareto_front_trials = 100,
                        optuna_optimize_pareto_front_timeout = 60*10,
                        optuna_storage = "sqlite:///optuna.db",

                        #dask parameters
                        n_jobs=1,
                        memory_limit = "4GB",
                        client = None,
                        processes = True,

                        #debugging and logging parameters
                        warm_start = False,
                        subset_column = None,
                        periodic_checkpoint_folder = None,
                        callback = None,

                        verbose = 0,
                        scatter = True,

                         # random seed for random number generator (rng)
                        random_state = None,

                        ):

        '''
        An sklearn baseestimator that uses genetic programming to optimize a pipeline.

        Parameters
        ----------

        scorers : (list, scorer)
            A scorer or list of scorers to be used in the cross-validation process.
            see https://scikit-learn.org/stable/modules/model_evaluation.html

        scorers_weights : list
            A list of weights to be applied to the scorers during the optimization process.

        classification : bool
            If True, the problem is treated as a classification problem. If False, the problem is treated as a regression problem.
            Used to determine the CV strategy.

        cv : int, cross-validator
            - (int): Number of folds to use in the cross-validation process. By uses the sklearn.model_selection.KFold cross-validator for regression and StratifiedKFold for classification. In both cases, shuffled is set to True.
            - (sklearn.model_selection.BaseCrossValidator): A cross-validator to use in the cross-validation process.
                - max_depth (int): The maximum depth from any node to the root of the pipelines to be generated.

        other_objective_functions : list, default=[]
            A list of other objective functions to apply to the pipeline. The function takes a single parameter for the graphpipeline estimator and returns either a single score or a list of scores.

        other_objective_functions_weights : list, default=[]
            A list of weights to be applied to the other objective functions.

        objective_function_names : list, default=None
            A list of names to be applied to the objective functions. If None, will use the names of the objective functions.

        bigger_is_better : bool, default=True
            If True, the objective function is maximized. If False, the objective function is minimized. Use negative weights to reverse the direction.


        max_size : int, default=np.inf
            The maximum number of nodes of the pipelines to be generated.

        linear_pipeline : bool, default=False
            If True, the pipelines generated will be linear. If False, the pipelines generated will be directed acyclic graphs.

        root_config_dict : dict, default='auto'
            The configuration dictionary to use for the root node of the model.
            If 'auto', will use "classifiers" if classification=True, else "regressors".
            - 'selectors' : A selection of sklearn Selector methods.
            - 'classifiers' : A selection of sklearn Classifier methods.
            - 'regressors' : A selection of sklearn Regressor methods.
            - 'transformers' : A selection of sklearn Transformer methods.
            - 'arithmetic_transformer' : A selection of sklearn Arithmetic Transformer methods that replicate symbolic classification/regression operators.
            - 'passthrough' : A node that just passes though the input. Useful for passing through raw inputs into inner nodes.
            - 'feature_set_selector' : A selector that pulls out specific subsets of columns from the data. Only well defined as a leaf.
                                        Subsets are set with the subsets parameter.
            - 'skrebate' : Includes ReliefF, SURF, SURFstar, MultiSURF.
            - 'MDR' : Includes MDR.
            - 'ContinuousMDR' : Includes ContinuousMDR.
            - 'genetic encoders' : Includes Genetic Encoder methods as used in AutoQTL.
            - 'FeatureEncodingFrequencySelector': Includes FeatureEncodingFrequencySelector method as used in AutoQTL.
            - list : a list of strings out of the above options to include the corresponding methods in the configuration dictionary.

        inner_config_dict : dict, default=["selectors", "transformers"]
            The configuration dictionary to use for the inner nodes of the model generation.
            Default ["selectors", "transformers"]
            - 'selectors' : A selection of sklearn Selector methods.
            - 'classifiers' : A selection of sklearn Classifier methods.
            - 'regressors' : A selection of sklearn Regressor methods.
            - 'transformers' : A selection of sklearn Transformer methods.
            - 'arithmetic_transformer' : A selection of sklearn Arithmetic Transformer methods that replicate symbolic classification/regression operators.
            - 'passthrough' : A node that just passes though the input. Useful for passing through raw inputs into inner nodes.
            - 'feature_set_selector' : A selector that pulls out specific subsets of columns from the data. Only well defined as a leaf.
                                        Subsets are set with the subsets parameter.
            - 'skrebate' : Includes ReliefF, SURF, SURFstar, MultiSURF.
            - 'MDR' : Includes MDR.
            - 'ContinuousMDR' : Includes ContinuousMDR.
            - 'genetic encoders' : Includes Genetic Encoder methods as used in AutoQTL.
            - 'FeatureEncodingFrequencySelector': Includes FeatureEncodingFrequencySelector method as used in AutoQTL.
            - list : a list of strings out of the above options to include the corresponding methods in the configuration dictionary.
            - None : If None and max_depth>1, the root_config_dict will be used for the inner nodes as well.

        leaf_config_dict : dict, default=None
            The configuration dictionary to use for the leaf node of the model. If set, leaf nodes must be from this dictionary.
            Otherwise leaf nodes will be generated from the root_config_dict.
            Default None
            - 'selectors' : A selection of sklearn Selector methods.
            - 'classifiers' : A selection of sklearn Classifier methods.
            - 'regressors' : A selection of sklearn Regressor methods.
            - 'transformers' : A selection of sklearn Transformer methods.
            - 'arithmetic_transformer' : A selection of sklearn Arithmetic Transformer methods that replicate symbolic classification/regression operators.
            - 'passthrough' : A node that just passes though the input. Useful for passing through raw inputs into inner nodes.
            - 'feature_set_selector' : A selector that pulls out specific subsets of columns from the data. Only well defined as a leaf.
                                        Subsets are set with the subsets parameter.
            - 'skrebate' : Includes ReliefF, SURF, SURFstar, MultiSURF.
            - 'MDR' : Includes MDR.
            - 'ContinuousMDR' : Includes ContinuousMDR.
            - 'genetic encoders' : Includes Genetic Encoder methods as used in AutoQTL.
            - 'FeatureEncodingFrequencySelector': Includes FeatureEncodingFrequencySelector method as used in AutoQTL.
            - list : a list of strings out of the above options to include the corresponding methods in the configuration dictionary.
            - None : If None, a leaf will not be required (i.e. the pipeline can be a single root node). Leaf nodes will be generated from the inner_config_dict.

        cross_val_predict_cv : int, default=0
            Number of folds to use for the cross_val_predict function for inner classifiers and regressors. Estimators will still be fit on the full dataset, but the following node will get the outputs from cross_val_predict.

            - 0-1 : When set to 0 or 1, the cross_val_predict function will not be used. The next layer will get the outputs from fitting and transforming the full dataset.
            - >=2 : When fitting pipelines with inner classifiers or regressors, they will still be fit on the full dataset.
                    However, the output to the next node will come from cross_val_predict with the specified number of folds.

        categorical_features: list or None
            Categorical columns to inpute and/or one hot encode during the preprocessing step. Used only if preprocessing is not False.
            - None : If None, TPOT2 will automatically use object columns in pandas dataframes as objects for one hot encoding in preprocessing.
            - List of categorical features. If X is a dataframe, this should be a list of column names. If X is a numpy array, this should be a list of column indices

        subsets : str or list, default=None
            Sets the subsets that the FeatureSetSeletor will select from if set as an option in one of the configuration dictionaries.
            - str : If a string, it is assumed to be a path to a csv file with the subsets.
                The first column is assumed to be the name of the subset and the remaining columns are the features in the subset.
            - list or np.ndarray : If a list or np.ndarray, it is assumed to be a list of subsets.
            - None : If None, each column will be treated as a subset. One column will be selected per subset.
            If subsets is None, each column will be treated as a subset. One column will be selected per subset.


        memory: Memory object or string, default=None
            If supplied, pipeline will cache each transformer after calling fit. This feature
            is used to avoid computing the fit transformers within a pipeline if the parameters
            and input data are identical with another fitted pipeline during optimization process.
            - String 'auto':
                TPOT uses memory caching with a temporary directory and cleans it up upon shutdown.
            - String path of a caching directory
                TPOT uses memory caching with the provided directory and TPOT does NOT clean
                the caching directory up upon shutdown. If the directory does not exist, TPOT will
                create it.
            - Memory object:
                TPOT uses the instance of joblib.Memory for memory caching,
                and TPOT does NOT clean the caching directory up upon shutdown.
            - None:
                TPOT does not use memory caching.

        preprocessing : bool or BaseEstimator/Pipeline,
            EXPERIMENTAL
            A pipeline that will be used to preprocess the data before CV.
            - bool : If True, will use a default preprocessing pipeline.
            - Pipeline : If an instance of a pipeline is given, will use that pipeline as the preprocessing pipeline.

        population_size : int, default=50
            Size of the population

        initial_population_size : int, default=None
            Size of the initial population. If None, population_size will be used.

        population_scaling : int, default=0.5
            Scaling factor to use when determining how fast we move the threshold moves from the start to end percentile.

        generations_until_end_population : int, default=1
            Number of generations until the population size reaches population_size

        generations : int, default=50
            Number of generations to run

        max_time_seconds : float, default=float("inf")
            Maximum time to run the optimization. If none or inf, will run until the end of the generations.

        max_eval_time_seconds : float, default=60*5
            Maximum time to evaluate a single individual. If none or inf, there will be no time limit per evaluation.

        validation_strategy : str, default='none'
            EXPERIMENTAL The validation strategy to use for selecting the final pipeline from the population. TPOT2 may overfit the cross validation score. A second validation set can be used to select the final pipeline.
            - 'auto' : Automatically determine the validation strategy based on the dataset shape.
            - 'reshuffled' : Use the same data for cross validation and final validation, but with different splits for the folds. This is the default for small datasets.
            - 'split' : Use a separate validation set for final validation. Data will be split according to validation_fraction. This is the default for medium datasets.
            - 'none' : Do not use a separate validation set for final validation. Select based on the original cross-validation score. This is the default for large datasets.

        validation_fraction : float, default=0.2
          EXPERIMENTAL The fraction of the dataset to use for the validation set when validation_strategy is 'split'. Must be between 0 and 1.

        disable_label_encoder : bool, default=False
            If True, TPOT will check if the target needs to be relabeled to be sequential ints from 0 to N. This is necessary for XGBoost compatibility. If the labels need to be encoded, TPOT2 will use sklearn.preprocessing.LabelEncoder to encode the labels. The encoder can be accessed via the self.label_encoder_ attribute.
            If False, no additional label encoders will be used.

        early_stop : int, default=None
            Number of generations without improvement before early stopping. All objectives must have converged within the tolerance for this to be triggered.

        scorers_early_stop_tol :
            -list of floats
                list of tolerances for each scorer. If the difference between the best score and the current score is less than the tolerance, the individual is considered to have converged
                If an index of the list is None, that item will not be used for early stopping
            -int
                If an int is given, it will be used as the tolerance for all objectives

        other_objectives_early_stop_tol :
            -list of floats
                list of tolerances for each of the other objective function. If the difference between the best score and the current score is less than the tolerance, the individual is considered to have converged
                If an index of the list is None, that item will not be used for early stopping
            -int
                If an int is given, it will be used as the tolerance for all objectives

        threshold_evaluation_early_stop : list [start, end], default=None
            starting and ending percentile to use as a threshold for the evaluation early stopping.
            Values between 0 and 100.

        threshold_evaluation_scaling : float [0,inf), default=0.5
            A scaling factor to use when determining how fast we move the threshold moves from the start to end percentile.
            Must be greater than zero. Higher numbers will move the threshold to the end faster.

        selection_evaluation_early_stop : list, default=None
            A lower and upper percent of the population size to select each round of CV.
            Values between 0 and 1.

        selection_evaluation_scaling : float, default=0.5
            A scaling factor to use when determining how fast we move the threshold moves from the start to end percentile.
            Must be greater than zero. Higher numbers will move the threshold to the end faster.

        min_history_threshold : int, default=0
            The minimum number of previous scores needed before using threshold early stopping.

        survival_percentage : float, default=1
            Percentage of the population size to utilize for mutation and crossover at the beginning of the generation. The rest are discarded. Individuals are selected with the selector passed into survival_selector. The value of this parameter must be between 0 and 1, inclusive.
            For example, if the population size is 100 and the survival percentage is .5, 50 individuals will be selected with NSGA2 from the existing population. These will be used for mutation and crossover to generate the next 100 individuals for the next generation. The remainder are discarded from the live population. In the next generation, there will now be the 50 parents + the 100 individuals for a total of 150. Surivival percentage is based of the population size parameter and not the existing population size (current population size when using successive halving). Therefore, in the next generation we will still select 50 individuals from the currently existing 150.

        crossover_probability : float, default=.2
            Probability of generating a new individual by crossover between two individuals.

        mutate_probability : float, default=.7
            Probability of generating a new individual by crossover between one individuals.

        mutate_then_crossover_probability : float, default=.05
            Probability of generating a new individual by mutating two individuals followed by crossover.

        crossover_then_mutate_probability : float, default=.05
            Probability of generating a new individual by crossover between two individuals followed by a mutation of the resulting individual.

        survival_selector : function, default=survival_select_NSGA2
            Function to use to select individuals for survival. Must take a matrix of scores and return selected indexes.
            Used to selected population_size * survival_percentage individuals at the start of each generation to use for mutation and crossover.

        parent_selector : function, default=parent_select_NSGA2
            Function to use to select pairs parents for crossover and individuals for mutation. Must take a matrix of scores and return selected indexes.

        budget_range : list [start, end], default=None
            A starting and ending budget to use for the budget scaling.

        budget_scaling float : [0,1], default=0.5
            A scaling factor to use when determining how fast we move the budget from the start to end budget.

        generations_until_end_budget : int, default=1
            The number of generations to run before reaching the max budget.

        stepwise_steps : int, default=1
            The number of staircase steps to take when scaling the budget and population size.


        n_jobs : int, default=1
            Number of processes to run in parallel.

        memory_limit : str, default="4GB"
            Memory limit for each job. See Dask [LocalCluster documentation](https://distributed.dask.org/en/stable/api.html#distributed.Client) for more information.

        client : dask.distributed.Client, default=None
            A dask client to use for parallelization. If not None, this will override the n_jobs and memory_limit parameters. If None, will create a new client with num_workers=n_jobs and memory_limit=memory_limit.

        processes : bool, default=True
            If True, will use multiprocessing to parallelize the optimization process. If False, will use threading.
            True seems to perform better. However, False is required for interactive debugging.


        warm_start : bool, default=False
            If True, will use the continue the evolutionary algorithm from the last generation of the previous run.

        subset_column : str or int, default=None
            EXPERIMENTAL The column to use for the subset selection. Must also pass in unique_subset_values to GraphIndividual to function.

        periodic_checkpoint_folder : str, default=None
            Folder to save the population to periodically. If None, no periodic saving will be done.
            If provided, training will resume from this checkpoint.

        callback : tpot2.CallBackInterface, default=None
            Callback object. Not implemented

        verbose : int, default=1
            How much information to print during the optimization process. Higher values include the information from lower values.
            0. nothing
            1. progress bar

            3. best individual
            4. warnings
            >=5. full warnings trace
            6. evaluations progress bar. (Temporary: This used to be 2. Currently, using evaluation progress bar may prevent some instances were we terminate a generation early due to it reaching max_time_seconds in the middle of a generation OR a pipeline failed to be terminated normally and we need to manually terminate it.)

        random_state : int, None, default=None
            A seed for reproducability of experiments. This value will be passed to numpy.random.default_rng() to create an instnce of the genrator to pass to other classes

            - int
                Will be used to create and lock in Generator instance with 'numpy.random.default_rng()'
            - None
                Will be used to create Generator for 'numpy.random.default_rng()' where a fresh, unpredictable entropy will be pulled from the OS

        Attributes
        ----------

        fitted_pipeline_ : GraphPipeline
            A fitted instance of the GraphPipeline that inherits from sklearn BaseEstimator. This is fitted on the full X, y passed to fit.

        evaluated_individuals : A pandas data frame containing data for all evaluated individuals in the run.
            Columns:
            - *objective functions : The first few columns correspond to the passed in scorers and objective functions
            - Parents : A tuple containing the indexes of the pipelines used to generate the pipeline of that row. If NaN, this pipeline was generated randomly in the initial population.
            - Variation_Function : Which variation function was used to mutate or crossover the parents. If NaN, this pipeline was generated randomly in the initial population.
            - Individual : The internal representation of the individual that is used during the evolutionary algorithm. This is not an sklearn BaseEstimator.
            - Generation : The generation the pipeline first appeared.
            - Pareto_Front	: The nondominated front that this pipeline belongs to. 0 means that its scores is not strictly dominated by any other individual.
                            To save on computational time, the best frontier is updated iteratively each generation.
                            The pipelines with the 0th pareto front do represent the exact best frontier. However, the pipelines with pareto front >= 1 are only in reference to the other pipelines in the final population.
                            All other pipelines are set to NaN.
            - Instance	: The unfitted GraphPipeline BaseEstimator.
            - *validation objective functions : Objective function scores evaluated on the validation set.
            - Validation_Pareto_Front : The full pareto front calculated on the validation set. This is calculated for all pipelines with Pareto_Front equal to 0. Unlike the Pareto_Front which only calculates the frontier and the final population, the Validation Pareto Front is calculated for all pipelines tested on the validation set.

        pareto_front : The same pandas dataframe as evaluated individuals, but containing only the frontier pareto front pipelines.
        '''

        # sklearn BaseEstimator must have a corresponding attribute for each parameter.
        # These should not be modified once set.

        self.scorers = scorers
        self.scorers_weights = scorers_weights
        self.classification = classification
        self.cv = cv
        self.other_objective_functions = other_objective_functions
        self.other_objective_functions_weights = other_objective_functions_weights
        self.objective_function_names = objective_function_names
        self.bigger_is_better = bigger_is_better
        self.hyperparameter_probability = hyperparameter_probability
        self.hyper_node_probability = hyper_node_probability
        self.hyperparameter_alpha = hyperparameter_alpha
        self.max_size = max_size
        self.linear_pipeline = linear_pipeline
        self.root_config_dict= root_config_dict
        self.inner_config_dict= inner_config_dict
        self.leaf_config_dict= leaf_config_dict
        self.cross_val_predict_cv = cross_val_predict_cv
        self.categorical_features = categorical_features
        self.subsets = subsets
        self.memory = memory
        self.preprocessing = preprocessing
        self.validation_strategy = validation_strategy
        self.validation_fraction = validation_fraction
        self.disable_label_encoder = disable_label_encoder
        self.population_size = population_size
        self.initial_population_size = initial_population_size
        self.population_scaling = population_scaling
        self.generations_until_end_population = generations_until_end_population
        self.generations = generations
        self.early_stop = early_stop
        self.scorers_early_stop_tol = scorers_early_stop_tol
        self.other_objectives_early_stop_tol = other_objectives_early_stop_tol
        self.max_time_seconds = max_time_seconds
        self.max_eval_time_seconds = max_eval_time_seconds
        self.n_jobs= n_jobs
        self.memory_limit = memory_limit
        self.client = client
        self.survival_percentage = survival_percentage
        self.crossover_probability = crossover_probability
        self.mutate_probability = mutate_probability
        self.mutate_then_crossover_probability= mutate_then_crossover_probability
        self.crossover_then_mutate_probability= crossover_then_mutate_probability
        self.survival_selector=survival_selector
        self.parent_selector=parent_selector
        self.budget_range = budget_range
        self.budget_scaling = budget_scaling
        self.generations_until_end_budget = generations_until_end_budget
        self.stepwise_steps = stepwise_steps
        self.threshold_evaluation_early_stop =threshold_evaluation_early_stop
        self.threshold_evaluation_scaling =  threshold_evaluation_scaling
        self.min_history_threshold = min_history_threshold
        self.selection_evaluation_early_stop = selection_evaluation_early_stop
        self.selection_evaluation_scaling =  selection_evaluation_scaling
        self.warm_start = warm_start
        self.subset_column = subset_column
        self.verbose = verbose
        self.periodic_checkpoint_folder = periodic_checkpoint_folder
        self.callback = callback
        self.processes = processes


        self.scatter = scatter

        self.optuna_optimize_pareto_front = optuna_optimize_pareto_front
        self.optuna_optimize_pareto_front_trials = optuna_optimize_pareto_front_trials
        self.optuna_optimize_pareto_front_timeout = optuna_optimize_pareto_front_timeout
        self.optuna_storage = optuna_storage

        # create random number generator based on rng_seed
        self.rng = np.random.default_rng(random_state)
        # save random state passed to us for other functions that use random_state
        self.random_state = random_state
        # set the numpy seed so anything using it will be consistent as well
        np.random.seed(random_state)

        #Initialize other used params


        if self.initial_population_size is None:
            self._initial_population_size = self.population_size
        else:
            self._initial_population_size = self.initial_population_size

        if isinstance(self.scorers, str):
            self._scorers = [self.scorers]

        elif callable(self.scorers):
            self._scorers = [self.scorers]
        else:
            self._scorers = self.scorers

        self._scorers = [sklearn.metrics.get_scorer(scoring) for scoring in self._scorers]
        self._scorers_early_stop_tol = self.scorers_early_stop_tol

        self._evolver = tpot2.evolvers.BaseEvolver

        self.objective_function_weights = [*scorers_weights, *other_objective_functions_weights]


        if self.objective_function_names is None:
            obj_names = [f.__name__ for f in other_objective_functions]
        else:
            obj_names = self.objective_function_names
        self.objective_names = [f._score_func.__name__ if hasattr(f,"_score_func") else f.__name__ for f in self._scorers] + obj_names


        if not isinstance(self.other_objectives_early_stop_tol, list):
            self._other_objectives_early_stop_tol = [self.other_objectives_early_stop_tol for _ in range(len(self.other_objective_functions))]
        else:
            self._other_objectives_early_stop_tol = self.other_objectives_early_stop_tol

        if not isinstance(self._scorers_early_stop_tol, list):
            self._scorers_early_stop_tol = [self._scorers_early_stop_tol for _ in range(len(self._scorers))]
        else:
            self._scorers_early_stop_tol = self._scorers_early_stop_tol

        self.early_stop_tol = [*self._scorers_early_stop_tol, *self._other_objectives_early_stop_tol]

        self._evolver_instance = None
        self.evaluated_individuals = None


        self.label_encoder_ = None


        set_dask_settings()


    def fit(self, X, y):
        if self.client is not None: #If user passed in a client manually
           _client = self.client
        else:

            if self.verbose >= 4:
                silence_logs = 30
            elif self.verbose >=5:
                silence_logs = 40
            else:
                silence_logs = 50
            cluster = LocalCluster(n_workers=self.n_jobs, #if no client is passed in and no global client exists, create our own
                    threads_per_worker=1,
                    processes=self.processes,
                    silence_logs=silence_logs,
                    memory_limit=self.memory_limit)
            _client = Client(cluster)

        if self.classification and not self.disable_label_encoder and not check_if_y_is_encoded(y):
            warnings.warn("Labels are not encoded as ints from 0 to N. For compatibility with some classifiers such as sklearn, TPOT has encoded y with the sklearn LabelEncoder. When using pipelines outside the main TPOT estimator class, you can encode the labels with est.label_encoder_")
            self.label_encoder_ = LabelEncoder()
            y = self.label_encoder_.fit_transform(y)

        self.evaluated_individuals = None
        #determine validation strategy
        if self.validation_strategy == 'auto':
            nrows = X.shape[0]
            ncols = X.shape[1]

            if nrows/ncols < 20:
                validation_strategy = 'reshuffled'
            elif nrows/ncols < 100:
                validation_strategy = 'split'
            else:
                validation_strategy = 'none'
        else:
            validation_strategy = self.validation_strategy

        if validation_strategy == 'split':
            if self.classification:
                X, X_val, y, y_val = train_test_split(X, y, test_size=self.validation_fraction, stratify=y, random_state=self.random_state)
            else:
                X, X_val, y, y_val = train_test_split(X, y, test_size=self.validation_fraction, random_state=self.random_state)


        X_original = X
        y_original = y
        if isinstance(self.cv, int) or isinstance(self.cv, float):
            n_folds = self.cv
        else:
            n_folds = self.cv.get_n_splits(X, y)

        if self.classification:
            X, y = remove_underrepresented_classes(X, y, n_folds)

        if self.preprocessing:
            #X = pd.DataFrame(X)

            if not isinstance(self.preprocessing, bool) and isinstance(self.preprocessing, sklearn.base.BaseEstimator):
                self._preprocessing_pipeline = self.preprocessing

            #TODO: check if there are missing values in X before imputation. If not, don't include imputation in pipeline. Check if there are categorical columns. If not, don't include one hot encoding in pipeline
            else: #if self.preprocessing is True or not a sklearn estimator

                pipeline_steps = []

                if self.categorical_features is not None: #if categorical features are specified, use those
                    pipeline_steps.append(("impute_categorical", tpot2.builtin_modules.ColumnSimpleImputer(self.categorical_features, strategy='most_frequent')))
                    pipeline_steps.append(("impute_numeric", tpot2.builtin_modules.ColumnSimpleImputer("numeric", strategy='mean')))
                    pipeline_steps.append(("impute_categorical", tpot2.builtin_modules.ColumnOneHotEncoder(self.categorical_features, strategy='most_frequent')))

                else:
                    if isinstance(X, pd.DataFrame):
                        categorical_columns = X.select_dtypes(include=['object']).columns
                        if len(categorical_columns) > 0:
                            pipeline_steps.append(("impute_categorical", tpot2.builtin_modules.ColumnSimpleImputer("categorical", strategy='most_frequent')))
                            pipeline_steps.append(("impute_numeric", tpot2.builtin_modules.ColumnSimpleImputer("numeric", strategy='mean')))
                            pipeline_steps.append(("impute_categorical", tpot2.builtin_modules.ColumnOneHotEncoder("categorical", strategy='most_frequent')))
                        else:
                            pipeline_steps.append(("impute_numeric", tpot2.builtin_modules.ColumnSimpleImputer("all", strategy='mean')))
                    else:
                        pipeline_steps.append(("impute_numeric", tpot2.builtin_modules.ColumnSimpleImputer("all", strategy='mean')))

                self._preprocessing_pipeline = sklearn.pipeline.Pipeline(pipeline_steps)

            X = self._preprocessing_pipeline.fit_transform(X, y)

        else:
            self._preprocessing_pipeline = None

        #_, y = sklearn.utils.check_X_y(X, y, y_numeric=True)

        #Set up the configuation dictionaries and the search spaces

        #check if self.cv is a number
        if isinstance(self.cv, int) or isinstance(self.cv, float):
            if self.classification:
                self.cv_gen = sklearn.model_selection.StratifiedKFold(n_splits=self.cv, shuffle=True, random_state=self.random_state)
            else:
                self.cv_gen = sklearn.model_selection.KFold(n_splits=self.cv, shuffle=True, random_state=self.random_state)

        else:
            self.cv_gen = sklearn.model_selection.check_cv(self.cv, y, classifier=self.classification)



        n_samples= int(math.floor(X.shape[0]/n_folds))
        n_features=X.shape[1]

        if isinstance(X, pd.DataFrame):
            self.feature_names = X.columns
        else:
            self.feature_names = None

        if self.root_config_dict == 'Auto':
            if self.classification:
                n_classes = len(np.unique(y))
                root_config_dict = get_configuration_dictionary("classifiers", n_samples, n_features, self.classification, self.random_state, self.cv_gen, subsets=self.subsets, feature_names=self.feature_names, n_classes=n_classes)
            else:
                root_config_dict = get_configuration_dictionary("regressors", n_samples, n_features, self.classification, self.random_state, self.cv_gen, subsets=self.subsets, feature_names=self.feature_names)
        else:
            root_config_dict = get_configuration_dictionary(self.root_config_dict, n_samples, n_features, self.classification, self.random_state, self.cv_gen, subsets=self.subsets,feature_names=self.feature_names)

        inner_config_dict = get_configuration_dictionary(self.inner_config_dict, n_samples, n_features, self.classification, self.random_state, self.cv_gen, subsets=self.subsets, feature_names=self.feature_names)
        leaf_config_dict = get_configuration_dictionary(self.leaf_config_dict, n_samples, n_features, self.classification, self.random_state, self.cv_gen, subsets=self.subsets, feature_names=self.feature_names)


        def objective_function(pipeline_individual,
                                            X,
                                            y,
                                            is_classification=self.classification,
                                            scorers= self._scorers,
                                            cv=self.cv_gen,
                                            other_objective_functions=self.other_objective_functions,
                                            memory=self.memory,
                                            cross_val_predict_cv=self.cross_val_predict_cv,
                                            subset_column=self.subset_column,
                                            **kwargs):
            return objective_function_generator(
                pipeline_individual,
                X,
                y,
                is_classification=is_classification,
                scorers= scorers,
                cv=cv,
                other_objective_functions=other_objective_functions,
                memory=memory,
                cross_val_predict_cv=cross_val_predict_cv,
                subset_column=subset_column,
                **kwargs,
            )

        self.individual_generator_instance = tpot2.individual_representations.graph_pipeline_individual.estimator_graph_individual_generator(
                                                            inner_config_dict=inner_config_dict,
                                                            root_config_dict=root_config_dict,
                                                            leaf_config_dict=leaf_config_dict,
                                                            max_size = self.max_size,
                                                            linear_pipeline=self.linear_pipeline,
                                                            hyperparameter_probability=self.hyperparameter_probability,
                                                            hyper_node_probability=self.hyper_node_probability,
                                                            hyperparameter_alpha=self.hyperparameter_alpha,
                                                            rng_=self.rng,
                                                                )

        if self.threshold_evaluation_early_stop is not None or self.selection_evaluation_early_stop is not None:
            evaluation_early_stop_steps = self.cv
        else:
            evaluation_early_stop_steps = None

        if self.scatter:
            X_future = _client.scatter(X)
            y_future = _client.scatter(y)
        else:
            X_future = X
            y_future = y

        #If warm start and we have an evolver instance, use the existing one
        if not(self.warm_start and self._evolver_instance is not None):
            self._evolver_instance = self._evolver(   individual_generator=self.individual_generator_instance,
                                            objective_functions= [objective_function],
                                            objective_function_weights = self.objective_function_weights,
                                            objective_names=self.objective_names,
                                            bigger_is_better = self.bigger_is_better,
                                            population_size= self.population_size,
                                            generations=self.generations,
                                            initial_population_size = self._initial_population_size,
                                            n_jobs=self.n_jobs,
                                            verbose = self.verbose,
                                            max_time_seconds =      self.max_time_seconds ,
                                            max_eval_time_seconds = self.max_eval_time_seconds,

                                            periodic_checkpoint_folder = self.periodic_checkpoint_folder,
                                            threshold_evaluation_early_stop = self.threshold_evaluation_early_stop,
                                            threshold_evaluation_scaling =  self.threshold_evaluation_scaling,
                                            min_history_threshold = self.min_history_threshold,

                                            selection_evaluation_early_stop = self.selection_evaluation_early_stop,
                                            selection_evaluation_scaling =  self.selection_evaluation_scaling,
                                            evaluation_early_stop_steps = evaluation_early_stop_steps,

                                            early_stop_tol = self.early_stop_tol,
                                            early_stop= self.early_stop,

                                            budget_range = self.budget_range,
                                            budget_scaling = self.budget_scaling,
                                            generations_until_end_budget = self.generations_until_end_budget,

                                            population_scaling = self.population_scaling,
                                            generations_until_end_population = self.generations_until_end_population,
                                            stepwise_steps = self.stepwise_steps,
                                            client = _client,
                                            objective_kwargs = {"X": X_future, "y": y_future},
                                            survival_selector=self.survival_selector,
                                            parent_selector=self.parent_selector,
                                            survival_percentage = self.survival_percentage,
                                            crossover_probability = self.crossover_probability,
                                            mutate_probability = self.mutate_probability,
                                            mutate_then_crossover_probability= self.mutate_then_crossover_probability,
                                            crossover_then_mutate_probability= self.crossover_then_mutate_probability,

                                            rng_=self.rng,
                                            )


        self._evolver_instance.optimize()
        #self._evolver_instance.population.update_pareto_fronts(self.objective_names, self.objective_function_weights)
        self.make_evaluated_individuals()


        if self.optuna_optimize_pareto_front:
            pareto_front_inds = self.pareto_front['Individual'].values
            all_graphs, all_scores = tpot2.individual_representations.graph_pipeline_individual.simple_parallel_optuna(pareto_front_inds,  objective_function, self.objective_function_weights, _client, storage=self.optuna_storage, steps=self.optuna_optimize_pareto_front_trials, verbose=self.verbose, max_eval_time_seconds=self.max_eval_time_seconds, max_time_seconds=self.optuna_optimize_pareto_front_timeout, **{"X": X, "y": y})
            all_scores = tpot2.utils.eval_utils.process_scores(all_scores, len(self.objective_function_weights))

            if len(all_graphs) > 0:
                df = pd.DataFrame(np.column_stack((all_graphs, all_scores,np.repeat("Optuna",len(all_graphs)))), columns=["Individual"] + self.objective_names +["Parents"])
                for obj in self.objective_names:
                    df[obj] = df[obj].apply(convert_to_float)

                self.evaluated_individuals = pd.concat([self.evaluated_individuals, df], ignore_index=True)
            else:
                print("WARNING NO OPTUNA TRIALS COMPLETED")

        tpot2.utils.get_pareto_frontier(self.evaluated_individuals, column_names=self.objective_names, weights=self.objective_function_weights, invalid_values=["TIMEOUT","INVALID"])

        if validation_strategy == 'reshuffled':
            best_pareto_front_idx = list(self.pareto_front.index)
            best_pareto_front = list(self.pareto_front.loc[best_pareto_front_idx]['Individual'])

            #reshuffle rows
            X, y = sklearn.utils.shuffle(X, y, random_state=self.random_state)

            if self.scatter:
                X_future = _client.scatter(X)
                y_future = _client.scatter(y)
            else:
                X_future = X
                y_future = y

            val_objective_function_list = [lambda   ind,
                                                    X,
                                                    y,
                                                    is_classification=self.classification,
                                                    scorers= self._scorers,
                                                    cv=self.cv_gen,
                                                    other_objective_functions=self.other_objective_functions,
                                                    memory=self.memory,
                                                    cross_val_predict_cv=self.cross_val_predict_cv,
                                                    subset_column=self.subset_column,
                                                    **kwargs: objective_function_generator(
                                                                                                ind,
                                                                                                X,
                                                                                                y,
                                                                                                is_classification=is_classification,
                                                                                                scorers= scorers,
                                                                                                cv=cv,
                                                                                                other_objective_functions=other_objective_functions,
                                                                                                memory=memory,
                                                                                                cross_val_predict_cv=cross_val_predict_cv,
                                                                                                subset_column=subset_column,
                                                                                                **kwargs,
                                                                                                )]

            objective_kwargs = {"X": X_future, "y": y_future}
            val_scores = tpot2.utils.eval_utils.parallel_eval_objective_list(
                best_pareto_front,
                val_objective_function_list, n_jobs=self.n_jobs, verbose=self.verbose, timeout=self.max_eval_time_seconds,n_expected_columns=len(self.objective_names), client=_client, **objective_kwargs)

            val_objective_names = ['validation_'+name for name in self.objective_names]
            self.objective_names_for_selection = val_objective_names
            self.evaluated_individuals.loc[best_pareto_front_idx,val_objective_names] = val_scores

            self.evaluated_individuals["Validation_Pareto_Front"] = tpot2.utils.get_pareto_front(self.evaluated_individuals, val_objective_names, self.objective_function_weights, invalid_values=["TIMEOUT","INVALID"])

        elif validation_strategy == 'split':


            if self.scatter:
                X_future = _client.scatter(X)
                y_future = _client.scatter(y)
                X_val_future = _client.scatter(X_val)
                y_val_future = _client.scatter(y_val)
            else:
                X_future = X
                y_future = y
                X_val_future = X_val
                y_val_future = y_val

            objective_kwargs = {"X": X_future, "y": y_future, "X_val" : X_val_future, "y_val":y_val_future }

            best_pareto_front_idx = list(self.pareto_front.index)
            best_pareto_front = list(self.pareto_front.loc[best_pareto_front_idx]['Individual'])
            val_objective_function_list = [lambda   ind,
                                                    X,
                                                    y,
                                                    X_val,
                                                    y_val,
                                                    scorers= self._scorers,
                                                    other_objective_functions=self.other_objective_functions,
                                                    memory=self.memory,
                                                    cross_val_predict_cv=self.cross_val_predict_cv,
                                                    subset_column=self.subset_column,
                                                    **kwargs: val_objective_function_generator(
                                                        ind,
                                                        X,
                                                        y,
                                                        X_val,
                                                        y_val,
                                                        scorers= scorers,
                                                        other_objective_functions=other_objective_functions,
                                                        memory=memory,
                                                        cross_val_predict_cv=cross_val_predict_cv,
                                                        subset_column=subset_column,
                                                        **kwargs,
                                                        )]

            val_scores = tpot2.utils.eval_utils.parallel_eval_objective_list(
                best_pareto_front,
                val_objective_function_list, n_jobs=self.n_jobs, verbose=self.verbose, timeout=self.max_eval_time_seconds,n_expected_columns=len(self.objective_names),client=_client, **objective_kwargs)

            val_objective_names = ['validation_'+name for name in self.objective_names]
            self.objective_names_for_selection = val_objective_names
            self.evaluated_individuals.loc[best_pareto_front_idx,val_objective_names] = val_scores
            self.evaluated_individuals["Validation_Pareto_Front"] = tpot2.utils.get_pareto_front(self.evaluated_individuals, val_objective_names, self.objective_function_weights, invalid_values=["TIMEOUT","INVALID"])
        else:
            self.objective_names_for_selection = self.objective_names

        val_scores = self.evaluated_individuals[~self.evaluated_individuals[self.objective_names_for_selection].isin(["TIMEOUT","INVALID"]).any(axis=1)][self.objective_names_for_selection].astype(float)
        weighted_scores = val_scores*self.objective_function_weights

        if self.bigger_is_better:
            best_idx = weighted_scores[self.objective_names_for_selection[0]].idxmax()
        else:
            best_idx = weighted_scores[self.objective_names_for_selection[0]].idxmin()

        best_individual = self.evaluated_individuals.loc[best_idx]['Individual']
        self.selected_best_score =  self.evaluated_individuals.loc[best_idx]


        best_individual_pipeline = best_individual.export_pipeline(memory=self.memory, cross_val_predict_cv=self.cross_val_predict_cv, subset_column=self.subset_column)

        if self.preprocessing:
            self.fitted_pipeline_ = sklearn.pipeline.make_pipeline(sklearn.base.clone(self._preprocessing_pipeline), best_individual_pipeline )
        else:
            self.fitted_pipeline_ = best_individual_pipeline

        self.fitted_pipeline_.fit(X_original,y_original) #TODO use y_original as well?


        if self.client is None: #no client was passed in
            #close cluster and client
            _client.close()
            cluster.close()

        return self

    def _estimator_has(attr):
        '''Check if we can delegate a method to the underlying estimator.
        First, we check the first fitted final estimator if available, otherwise we
        check the unfitted final estimator.
        '''
        return  lambda self: (self.fitted_pipeline_ is not None and
            hasattr(self.fitted_pipeline_, attr)
        )






    @available_if(_estimator_has('predict'))
    def predict(self, X, **predict_params):
        check_is_fitted(self)
        #X = check_array(X)

        preds = self.fitted_pipeline_.predict(X,**predict_params)
        if self.classification and self.label_encoder_:
            preds = self.label_encoder_.inverse_transform(preds)

        return preds

    @available_if(_estimator_has('predict_proba'))
    def predict_proba(self, X, **predict_params):
        check_is_fitted(self)
        #X = check_array(X)
        return self.fitted_pipeline_.predict_proba(X,**predict_params)

    @available_if(_estimator_has('decision_function'))
    def decision_function(self, X, **predict_params):
        check_is_fitted(self)
        #X = check_array(X)
        return self.fitted_pipeline_.decision_function(X,**predict_params)

    @available_if(_estimator_has('transform'))
    def transform(self, X, **predict_params):
        check_is_fitted(self)
        #X = check_array(X)
        return self.fitted_pipeline_.transform(X,**predict_params)

    @property
    def classes_(self):
        """The classes labels. Only exist if the last step is a classifier."""
        if self.label_encoder_:
            return self.label_encoder_.classes_
        else:
            return self.fitted_pipeline_.classes_


    @property
    def _estimator_type(self):
        return self.fitted_pipeline_._estimator_type


    def make_evaluated_individuals(self):
        #check if _evolver_instance exists
        if self.evaluated_individuals is None:
            self.evaluated_individuals  =  self._evolver_instance.population.evaluated_individuals.copy()
            objects = list(self.evaluated_individuals.index)
            object_to_int = dict(zip(objects, range(len(objects))))
            self.evaluated_individuals = self.evaluated_individuals.set_index(self.evaluated_individuals.index.map(object_to_int))
            self.evaluated_individuals['Parents'] = self.evaluated_individuals['Parents'].apply(lambda row: convert_parents_tuples_to_integers(row, object_to_int))

            self.evaluated_individuals["Instance"] = self.evaluated_individuals["Individual"].apply(lambda ind: apply_make_pipeline(ind, preprocessing_pipeline=self._preprocessing_pipeline))

        return self.evaluated_individuals

    @property
    def pareto_front(self):
        #check if _evolver_instance exists
        if self.evaluated_individuals is None:
            return None
        else:
            if "Pareto_Front" not in self.evaluated_individuals:
                return self.evaluated_individuals
            else:
                return self.evaluated_individuals[self.evaluated_individuals["Pareto_Front"]==1]

classes_ property

The classes labels. Only exist if the last step is a classifier.

__init__(scorers, scorers_weights, classification, cv=5, other_objective_functions=[], other_objective_functions_weights=[], objective_function_names=None, bigger_is_better=True, hyperparameter_probability=1, hyper_node_probability=0, hyperparameter_alpha=1, max_size=np.inf, linear_pipeline=False, root_config_dict='Auto', inner_config_dict=['selectors', 'transformers'], leaf_config_dict=None, cross_val_predict_cv=0, categorical_features=None, subsets=None, memory=None, preprocessing=False, population_size=50, initial_population_size=None, population_scaling=0.5, generations_until_end_population=1, generations=None, max_time_seconds=3600, max_eval_time_seconds=60 * 10, validation_strategy='none', validation_fraction=0.2, disable_label_encoder=False, early_stop=None, scorers_early_stop_tol=0.001, other_objectives_early_stop_tol=None, threshold_evaluation_early_stop=None, threshold_evaluation_scaling=0.5, selection_evaluation_early_stop=None, selection_evaluation_scaling=0.5, min_history_threshold=20, survival_percentage=1, crossover_probability=0.2, mutate_probability=0.7, mutate_then_crossover_probability=0.05, crossover_then_mutate_probability=0.05, survival_selector=survival_select_NSGA2, parent_selector=tournament_selection_dominated, budget_range=None, budget_scaling=0.5, generations_until_end_budget=1, stepwise_steps=5, optuna_optimize_pareto_front=False, optuna_optimize_pareto_front_trials=100, optuna_optimize_pareto_front_timeout=60 * 10, optuna_storage='sqlite:///optuna.db', n_jobs=1, memory_limit='4GB', client=None, processes=True, warm_start=False, subset_column=None, periodic_checkpoint_folder=None, callback=None, verbose=0, scatter=True, random_state=None)

An sklearn baseestimator that uses genetic programming to optimize a pipeline.

Parameters:

Name Type Description Default
scorers (list, scorer)

A scorer or list of scorers to be used in the cross-validation process. see https://scikit-learn.org/stable/modules/model_evaluation.html

required
scorers_weights list

A list of weights to be applied to the scorers during the optimization process.

required
classification bool

If True, the problem is treated as a classification problem. If False, the problem is treated as a regression problem. Used to determine the CV strategy.

required
cv (int, cross - validator)
  • (int): Number of folds to use in the cross-validation process. By uses the sklearn.model_selection.KFold cross-validator for regression and StratifiedKFold for classification. In both cases, shuffled is set to True.
  • (sklearn.model_selection.BaseCrossValidator): A cross-validator to use in the cross-validation process.
    • max_depth (int): The maximum depth from any node to the root of the pipelines to be generated.
5
other_objective_functions list

A list of other objective functions to apply to the pipeline. The function takes a single parameter for the graphpipeline estimator and returns either a single score or a list of scores.

[]
other_objective_functions_weights list

A list of weights to be applied to the other objective functions.

[]
objective_function_names list

A list of names to be applied to the objective functions. If None, will use the names of the objective functions.

None
bigger_is_better bool

If True, the objective function is maximized. If False, the objective function is minimized. Use negative weights to reverse the direction.

True
max_size int

The maximum number of nodes of the pipelines to be generated.

np.inf
linear_pipeline bool

If True, the pipelines generated will be linear. If False, the pipelines generated will be directed acyclic graphs.

False
root_config_dict dict

The configuration dictionary to use for the root node of the model. If 'auto', will use "classifiers" if classification=True, else "regressors". - 'selectors' : A selection of sklearn Selector methods. - 'classifiers' : A selection of sklearn Classifier methods. - 'regressors' : A selection of sklearn Regressor methods. - 'transformers' : A selection of sklearn Transformer methods. - 'arithmetic_transformer' : A selection of sklearn Arithmetic Transformer methods that replicate symbolic classification/regression operators. - 'passthrough' : A node that just passes though the input. Useful for passing through raw inputs into inner nodes. - 'feature_set_selector' : A selector that pulls out specific subsets of columns from the data. Only well defined as a leaf. Subsets are set with the subsets parameter. - 'skrebate' : Includes ReliefF, SURF, SURFstar, MultiSURF. - 'MDR' : Includes MDR. - 'ContinuousMDR' : Includes ContinuousMDR. - 'genetic encoders' : Includes Genetic Encoder methods as used in AutoQTL. - 'FeatureEncodingFrequencySelector': Includes FeatureEncodingFrequencySelector method as used in AutoQTL. - list : a list of strings out of the above options to include the corresponding methods in the configuration dictionary.

'auto'
inner_config_dict dict

The configuration dictionary to use for the inner nodes of the model generation. Default ["selectors", "transformers"] - 'selectors' : A selection of sklearn Selector methods. - 'classifiers' : A selection of sklearn Classifier methods. - 'regressors' : A selection of sklearn Regressor methods. - 'transformers' : A selection of sklearn Transformer methods. - 'arithmetic_transformer' : A selection of sklearn Arithmetic Transformer methods that replicate symbolic classification/regression operators. - 'passthrough' : A node that just passes though the input. Useful for passing through raw inputs into inner nodes. - 'feature_set_selector' : A selector that pulls out specific subsets of columns from the data. Only well defined as a leaf. Subsets are set with the subsets parameter. - 'skrebate' : Includes ReliefF, SURF, SURFstar, MultiSURF. - 'MDR' : Includes MDR. - 'ContinuousMDR' : Includes ContinuousMDR. - 'genetic encoders' : Includes Genetic Encoder methods as used in AutoQTL. - 'FeatureEncodingFrequencySelector': Includes FeatureEncodingFrequencySelector method as used in AutoQTL. - list : a list of strings out of the above options to include the corresponding methods in the configuration dictionary. - None : If None and max_depth>1, the root_config_dict will be used for the inner nodes as well.

["selectors", "transformers"]
leaf_config_dict dict

The configuration dictionary to use for the leaf node of the model. If set, leaf nodes must be from this dictionary. Otherwise leaf nodes will be generated from the root_config_dict. Default None - 'selectors' : A selection of sklearn Selector methods. - 'classifiers' : A selection of sklearn Classifier methods. - 'regressors' : A selection of sklearn Regressor methods. - 'transformers' : A selection of sklearn Transformer methods. - 'arithmetic_transformer' : A selection of sklearn Arithmetic Transformer methods that replicate symbolic classification/regression operators. - 'passthrough' : A node that just passes though the input. Useful for passing through raw inputs into inner nodes. - 'feature_set_selector' : A selector that pulls out specific subsets of columns from the data. Only well defined as a leaf. Subsets are set with the subsets parameter. - 'skrebate' : Includes ReliefF, SURF, SURFstar, MultiSURF. - 'MDR' : Includes MDR. - 'ContinuousMDR' : Includes ContinuousMDR. - 'genetic encoders' : Includes Genetic Encoder methods as used in AutoQTL. - 'FeatureEncodingFrequencySelector': Includes FeatureEncodingFrequencySelector method as used in AutoQTL. - list : a list of strings out of the above options to include the corresponding methods in the configuration dictionary. - None : If None, a leaf will not be required (i.e. the pipeline can be a single root node). Leaf nodes will be generated from the inner_config_dict.

None
cross_val_predict_cv int

Number of folds to use for the cross_val_predict function for inner classifiers and regressors. Estimators will still be fit on the full dataset, but the following node will get the outputs from cross_val_predict.

  • 0-1 : When set to 0 or 1, the cross_val_predict function will not be used. The next layer will get the outputs from fitting and transforming the full dataset.
  • =2 : When fitting pipelines with inner classifiers or regressors, they will still be fit on the full dataset. However, the output to the next node will come from cross_val_predict with the specified number of folds.

0
categorical_features

Categorical columns to inpute and/or one hot encode during the preprocessing step. Used only if preprocessing is not False. - None : If None, TPOT2 will automatically use object columns in pandas dataframes as objects for one hot encoding in preprocessing. - List of categorical features. If X is a dataframe, this should be a list of column names. If X is a numpy array, this should be a list of column indices

None
subsets str or list

Sets the subsets that the FeatureSetSeletor will select from if set as an option in one of the configuration dictionaries. - str : If a string, it is assumed to be a path to a csv file with the subsets. The first column is assumed to be the name of the subset and the remaining columns are the features in the subset. - list or np.ndarray : If a list or np.ndarray, it is assumed to be a list of subsets. - None : If None, each column will be treated as a subset. One column will be selected per subset. If subsets is None, each column will be treated as a subset. One column will be selected per subset.

None
memory

If supplied, pipeline will cache each transformer after calling fit. This feature is used to avoid computing the fit transformers within a pipeline if the parameters and input data are identical with another fitted pipeline during optimization process. - String 'auto': TPOT uses memory caching with a temporary directory and cleans it up upon shutdown. - String path of a caching directory TPOT uses memory caching with the provided directory and TPOT does NOT clean the caching directory up upon shutdown. If the directory does not exist, TPOT will create it. - Memory object: TPOT uses the instance of joblib.Memory for memory caching, and TPOT does NOT clean the caching directory up upon shutdown. - None: TPOT does not use memory caching.

None
preprocessing (bool or BaseEstimator / Pipeline)

EXPERIMENTAL A pipeline that will be used to preprocess the data before CV. - bool : If True, will use a default preprocessing pipeline. - Pipeline : If an instance of a pipeline is given, will use that pipeline as the preprocessing pipeline.

False
population_size int

Size of the population

50
initial_population_size int

Size of the initial population. If None, population_size will be used.

None
population_scaling int

Scaling factor to use when determining how fast we move the threshold moves from the start to end percentile.

0.5
generations_until_end_population int

Number of generations until the population size reaches population_size

1
generations int

Number of generations to run

50
max_time_seconds float

Maximum time to run the optimization. If none or inf, will run until the end of the generations.

float("inf")
max_eval_time_seconds float

Maximum time to evaluate a single individual. If none or inf, there will be no time limit per evaluation.

60*5
validation_strategy str

EXPERIMENTAL The validation strategy to use for selecting the final pipeline from the population. TPOT2 may overfit the cross validation score. A second validation set can be used to select the final pipeline. - 'auto' : Automatically determine the validation strategy based on the dataset shape. - 'reshuffled' : Use the same data for cross validation and final validation, but with different splits for the folds. This is the default for small datasets. - 'split' : Use a separate validation set for final validation. Data will be split according to validation_fraction. This is the default for medium datasets. - 'none' : Do not use a separate validation set for final validation. Select based on the original cross-validation score. This is the default for large datasets.

'none'
validation_fraction float

EXPERIMENTAL The fraction of the dataset to use for the validation set when validation_strategy is 'split'. Must be between 0 and 1.

0.2
disable_label_encoder bool

If True, TPOT will check if the target needs to be relabeled to be sequential ints from 0 to N. This is necessary for XGBoost compatibility. If the labels need to be encoded, TPOT2 will use sklearn.preprocessing.LabelEncoder to encode the labels. The encoder can be accessed via the self.label_encoder_ attribute. If False, no additional label encoders will be used.

False
early_stop int

Number of generations without improvement before early stopping. All objectives must have converged within the tolerance for this to be triggered.

None
scorers_early_stop_tol

-list of floats list of tolerances for each scorer. If the difference between the best score and the current score is less than the tolerance, the individual is considered to have converged If an index of the list is None, that item will not be used for early stopping -int If an int is given, it will be used as the tolerance for all objectives

0.001
other_objectives_early_stop_tol

-list of floats list of tolerances for each of the other objective function. If the difference between the best score and the current score is less than the tolerance, the individual is considered to have converged If an index of the list is None, that item will not be used for early stopping -int If an int is given, it will be used as the tolerance for all objectives

None
threshold_evaluation_early_stop list[start, end]

starting and ending percentile to use as a threshold for the evaluation early stopping. Values between 0 and 100.

None
threshold_evaluation_scaling float [0,inf)

A scaling factor to use when determining how fast we move the threshold moves from the start to end percentile. Must be greater than zero. Higher numbers will move the threshold to the end faster.

0.5
selection_evaluation_early_stop list

A lower and upper percent of the population size to select each round of CV. Values between 0 and 1.

None
selection_evaluation_scaling float

A scaling factor to use when determining how fast we move the threshold moves from the start to end percentile. Must be greater than zero. Higher numbers will move the threshold to the end faster.

0.5
min_history_threshold int

The minimum number of previous scores needed before using threshold early stopping.

0
survival_percentage float

Percentage of the population size to utilize for mutation and crossover at the beginning of the generation. The rest are discarded. Individuals are selected with the selector passed into survival_selector. The value of this parameter must be between 0 and 1, inclusive. For example, if the population size is 100 and the survival percentage is .5, 50 individuals will be selected with NSGA2 from the existing population. These will be used for mutation and crossover to generate the next 100 individuals for the next generation. The remainder are discarded from the live population. In the next generation, there will now be the 50 parents + the 100 individuals for a total of 150. Surivival percentage is based of the population size parameter and not the existing population size (current population size when using successive halving). Therefore, in the next generation we will still select 50 individuals from the currently existing 150.

1
crossover_probability float

Probability of generating a new individual by crossover between two individuals.

.2
mutate_probability float

Probability of generating a new individual by crossover between one individuals.

.7
mutate_then_crossover_probability float

Probability of generating a new individual by mutating two individuals followed by crossover.

.05
crossover_then_mutate_probability float

Probability of generating a new individual by crossover between two individuals followed by a mutation of the resulting individual.

.05
survival_selector function

Function to use to select individuals for survival. Must take a matrix of scores and return selected indexes. Used to selected population_size * survival_percentage individuals at the start of each generation to use for mutation and crossover.

survival_select_NSGA2
parent_selector function

Function to use to select pairs parents for crossover and individuals for mutation. Must take a matrix of scores and return selected indexes.

parent_select_NSGA2
budget_range list[start, end]

A starting and ending budget to use for the budget scaling.

None
budget_scaling

A scaling factor to use when determining how fast we move the budget from the start to end budget.

0.5
generations_until_end_budget int

The number of generations to run before reaching the max budget.

1
stepwise_steps int

The number of staircase steps to take when scaling the budget and population size.

1
n_jobs int

Number of processes to run in parallel.

1
memory_limit str

Memory limit for each job. See Dask LocalCluster documentation for more information.

"4GB"
client Client

A dask client to use for parallelization. If not None, this will override the n_jobs and memory_limit parameters. If None, will create a new client with num_workers=n_jobs and memory_limit=memory_limit.

None
processes bool

If True, will use multiprocessing to parallelize the optimization process. If False, will use threading. True seems to perform better. However, False is required for interactive debugging.

True
warm_start bool

If True, will use the continue the evolutionary algorithm from the last generation of the previous run.

False
subset_column str or int

EXPERIMENTAL The column to use for the subset selection. Must also pass in unique_subset_values to GraphIndividual to function.

None
periodic_checkpoint_folder str

Folder to save the population to periodically. If None, no periodic saving will be done. If provided, training will resume from this checkpoint.

None
callback CallBackInterface

Callback object. Not implemented

None
verbose int

How much information to print during the optimization process. Higher values include the information from lower values. 0. nothing 1. progress bar

  1. best individual
  2. warnings

    =5. full warnings trace

  3. evaluations progress bar. (Temporary: This used to be 2. Currently, using evaluation progress bar may prevent some instances were we terminate a generation early due to it reaching max_time_seconds in the middle of a generation OR a pipeline failed to be terminated normally and we need to manually terminate it.)
1
random_state (int, None)

A seed for reproducability of experiments. This value will be passed to numpy.random.default_rng() to create an instnce of the genrator to pass to other classes

  • int Will be used to create and lock in Generator instance with 'numpy.random.default_rng()'
  • None Will be used to create Generator for 'numpy.random.default_rng()' where a fresh, unpredictable entropy will be pulled from the OS
None

Attributes:

Name Type Description
fitted_pipeline_ GraphPipeline

A fitted instance of the GraphPipeline that inherits from sklearn BaseEstimator. This is fitted on the full X, y passed to fit.

evaluated_individuals A pandas data frame containing data for all evaluated individuals in the run.

Columns: - objective functions : The first few columns correspond to the passed in scorers and objective functions - Parents : A tuple containing the indexes of the pipelines used to generate the pipeline of that row. If NaN, this pipeline was generated randomly in the initial population. - Variation_Function : Which variation function was used to mutate or crossover the parents. If NaN, this pipeline was generated randomly in the initial population. - Individual : The internal representation of the individual that is used during the evolutionary algorithm. This is not an sklearn BaseEstimator. - Generation : The generation the pipeline first appeared. - Pareto_Front : The nondominated front that this pipeline belongs to. 0 means that its scores is not strictly dominated by any other individual. To save on computational time, the best frontier is updated iteratively each generation. The pipelines with the 0th pareto front do represent the exact best frontier. However, the pipelines with pareto front >= 1 are only in reference to the other pipelines in the final population. All other pipelines are set to NaN. - Instance : The unfitted GraphPipeline BaseEstimator. - validation objective functions : Objective function scores evaluated on the validation set. - Validation_Pareto_Front : The full pareto front calculated on the validation set. This is calculated for all pipelines with Pareto_Front equal to 0. Unlike the Pareto_Front which only calculates the frontier and the final population, the Validation Pareto Front is calculated for all pipelines tested on the validation set.

pareto_front The same pandas dataframe as evaluated individuals, but containing only the frontier pareto front pipelines.
Source code in tpot2/tpot_estimator/estimator.py
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
def __init__(self,  scorers,
                    scorers_weights,
                    classification,
                    cv = 5,
                    other_objective_functions=[],
                    other_objective_functions_weights = [],
                    objective_function_names = None,
                    bigger_is_better = True,

                    hyperparameter_probability = 1,
                    hyper_node_probability = 0,
                    hyperparameter_alpha = 1,
                    max_size = np.inf,
                    linear_pipeline = False,
                    root_config_dict= 'Auto',
                    inner_config_dict=["selectors", "transformers"],
                    leaf_config_dict= None,
                    cross_val_predict_cv = 0,
                    categorical_features = None,
                    subsets = None,
                    memory = None,
                    preprocessing = False,
                    population_size = 50,
                    initial_population_size = None,
                    population_scaling = .5,
                    generations_until_end_population = 1,
                    generations = None,
                    max_time_seconds=3600,
                    max_eval_time_seconds=60*10,
                    validation_strategy = "none",
                    validation_fraction = .2,
                    disable_label_encoder = False,

                    #early stopping parameters
                    early_stop = None,
                    scorers_early_stop_tol = 0.001,
                    other_objectives_early_stop_tol =None,
                    threshold_evaluation_early_stop = None,
                    threshold_evaluation_scaling = .5,
                    selection_evaluation_early_stop = None,
                    selection_evaluation_scaling = .5,
                    min_history_threshold = 20,

                    #evolver parameters
                    survival_percentage = 1,
                    crossover_probability=.2,
                    mutate_probability=.7,
                    mutate_then_crossover_probability=.05,
                    crossover_then_mutate_probability=.05,
                    survival_selector = survival_select_NSGA2,
                    parent_selector = tournament_selection_dominated,

                    #budget parameters
                    budget_range = None,
                    budget_scaling = .5,
                    generations_until_end_budget = 1,
                    stepwise_steps = 5,


                    optuna_optimize_pareto_front = False,
                    optuna_optimize_pareto_front_trials = 100,
                    optuna_optimize_pareto_front_timeout = 60*10,
                    optuna_storage = "sqlite:///optuna.db",

                    #dask parameters
                    n_jobs=1,
                    memory_limit = "4GB",
                    client = None,
                    processes = True,

                    #debugging and logging parameters
                    warm_start = False,
                    subset_column = None,
                    periodic_checkpoint_folder = None,
                    callback = None,

                    verbose = 0,
                    scatter = True,

                     # random seed for random number generator (rng)
                    random_state = None,

                    ):

    '''
    An sklearn baseestimator that uses genetic programming to optimize a pipeline.

    Parameters
    ----------

    scorers : (list, scorer)
        A scorer or list of scorers to be used in the cross-validation process.
        see https://scikit-learn.org/stable/modules/model_evaluation.html

    scorers_weights : list
        A list of weights to be applied to the scorers during the optimization process.

    classification : bool
        If True, the problem is treated as a classification problem. If False, the problem is treated as a regression problem.
        Used to determine the CV strategy.

    cv : int, cross-validator
        - (int): Number of folds to use in the cross-validation process. By uses the sklearn.model_selection.KFold cross-validator for regression and StratifiedKFold for classification. In both cases, shuffled is set to True.
        - (sklearn.model_selection.BaseCrossValidator): A cross-validator to use in the cross-validation process.
            - max_depth (int): The maximum depth from any node to the root of the pipelines to be generated.

    other_objective_functions : list, default=[]
        A list of other objective functions to apply to the pipeline. The function takes a single parameter for the graphpipeline estimator and returns either a single score or a list of scores.

    other_objective_functions_weights : list, default=[]
        A list of weights to be applied to the other objective functions.

    objective_function_names : list, default=None
        A list of names to be applied to the objective functions. If None, will use the names of the objective functions.

    bigger_is_better : bool, default=True
        If True, the objective function is maximized. If False, the objective function is minimized. Use negative weights to reverse the direction.


    max_size : int, default=np.inf
        The maximum number of nodes of the pipelines to be generated.

    linear_pipeline : bool, default=False
        If True, the pipelines generated will be linear. If False, the pipelines generated will be directed acyclic graphs.

    root_config_dict : dict, default='auto'
        The configuration dictionary to use for the root node of the model.
        If 'auto', will use "classifiers" if classification=True, else "regressors".
        - 'selectors' : A selection of sklearn Selector methods.
        - 'classifiers' : A selection of sklearn Classifier methods.
        - 'regressors' : A selection of sklearn Regressor methods.
        - 'transformers' : A selection of sklearn Transformer methods.
        - 'arithmetic_transformer' : A selection of sklearn Arithmetic Transformer methods that replicate symbolic classification/regression operators.
        - 'passthrough' : A node that just passes though the input. Useful for passing through raw inputs into inner nodes.
        - 'feature_set_selector' : A selector that pulls out specific subsets of columns from the data. Only well defined as a leaf.
                                    Subsets are set with the subsets parameter.
        - 'skrebate' : Includes ReliefF, SURF, SURFstar, MultiSURF.
        - 'MDR' : Includes MDR.
        - 'ContinuousMDR' : Includes ContinuousMDR.
        - 'genetic encoders' : Includes Genetic Encoder methods as used in AutoQTL.
        - 'FeatureEncodingFrequencySelector': Includes FeatureEncodingFrequencySelector method as used in AutoQTL.
        - list : a list of strings out of the above options to include the corresponding methods in the configuration dictionary.

    inner_config_dict : dict, default=["selectors", "transformers"]
        The configuration dictionary to use for the inner nodes of the model generation.
        Default ["selectors", "transformers"]
        - 'selectors' : A selection of sklearn Selector methods.
        - 'classifiers' : A selection of sklearn Classifier methods.
        - 'regressors' : A selection of sklearn Regressor methods.
        - 'transformers' : A selection of sklearn Transformer methods.
        - 'arithmetic_transformer' : A selection of sklearn Arithmetic Transformer methods that replicate symbolic classification/regression operators.
        - 'passthrough' : A node that just passes though the input. Useful for passing through raw inputs into inner nodes.
        - 'feature_set_selector' : A selector that pulls out specific subsets of columns from the data. Only well defined as a leaf.
                                    Subsets are set with the subsets parameter.
        - 'skrebate' : Includes ReliefF, SURF, SURFstar, MultiSURF.
        - 'MDR' : Includes MDR.
        - 'ContinuousMDR' : Includes ContinuousMDR.
        - 'genetic encoders' : Includes Genetic Encoder methods as used in AutoQTL.
        - 'FeatureEncodingFrequencySelector': Includes FeatureEncodingFrequencySelector method as used in AutoQTL.
        - list : a list of strings out of the above options to include the corresponding methods in the configuration dictionary.
        - None : If None and max_depth>1, the root_config_dict will be used for the inner nodes as well.

    leaf_config_dict : dict, default=None
        The configuration dictionary to use for the leaf node of the model. If set, leaf nodes must be from this dictionary.
        Otherwise leaf nodes will be generated from the root_config_dict.
        Default None
        - 'selectors' : A selection of sklearn Selector methods.
        - 'classifiers' : A selection of sklearn Classifier methods.
        - 'regressors' : A selection of sklearn Regressor methods.
        - 'transformers' : A selection of sklearn Transformer methods.
        - 'arithmetic_transformer' : A selection of sklearn Arithmetic Transformer methods that replicate symbolic classification/regression operators.
        - 'passthrough' : A node that just passes though the input. Useful for passing through raw inputs into inner nodes.
        - 'feature_set_selector' : A selector that pulls out specific subsets of columns from the data. Only well defined as a leaf.
                                    Subsets are set with the subsets parameter.
        - 'skrebate' : Includes ReliefF, SURF, SURFstar, MultiSURF.
        - 'MDR' : Includes MDR.
        - 'ContinuousMDR' : Includes ContinuousMDR.
        - 'genetic encoders' : Includes Genetic Encoder methods as used in AutoQTL.
        - 'FeatureEncodingFrequencySelector': Includes FeatureEncodingFrequencySelector method as used in AutoQTL.
        - list : a list of strings out of the above options to include the corresponding methods in the configuration dictionary.
        - None : If None, a leaf will not be required (i.e. the pipeline can be a single root node). Leaf nodes will be generated from the inner_config_dict.

    cross_val_predict_cv : int, default=0
        Number of folds to use for the cross_val_predict function for inner classifiers and regressors. Estimators will still be fit on the full dataset, but the following node will get the outputs from cross_val_predict.

        - 0-1 : When set to 0 or 1, the cross_val_predict function will not be used. The next layer will get the outputs from fitting and transforming the full dataset.
        - >=2 : When fitting pipelines with inner classifiers or regressors, they will still be fit on the full dataset.
                However, the output to the next node will come from cross_val_predict with the specified number of folds.

    categorical_features: list or None
        Categorical columns to inpute and/or one hot encode during the preprocessing step. Used only if preprocessing is not False.
        - None : If None, TPOT2 will automatically use object columns in pandas dataframes as objects for one hot encoding in preprocessing.
        - List of categorical features. If X is a dataframe, this should be a list of column names. If X is a numpy array, this should be a list of column indices

    subsets : str or list, default=None
        Sets the subsets that the FeatureSetSeletor will select from if set as an option in one of the configuration dictionaries.
        - str : If a string, it is assumed to be a path to a csv file with the subsets.
            The first column is assumed to be the name of the subset and the remaining columns are the features in the subset.
        - list or np.ndarray : If a list or np.ndarray, it is assumed to be a list of subsets.
        - None : If None, each column will be treated as a subset. One column will be selected per subset.
        If subsets is None, each column will be treated as a subset. One column will be selected per subset.


    memory: Memory object or string, default=None
        If supplied, pipeline will cache each transformer after calling fit. This feature
        is used to avoid computing the fit transformers within a pipeline if the parameters
        and input data are identical with another fitted pipeline during optimization process.
        - String 'auto':
            TPOT uses memory caching with a temporary directory and cleans it up upon shutdown.
        - String path of a caching directory
            TPOT uses memory caching with the provided directory and TPOT does NOT clean
            the caching directory up upon shutdown. If the directory does not exist, TPOT will
            create it.
        - Memory object:
            TPOT uses the instance of joblib.Memory for memory caching,
            and TPOT does NOT clean the caching directory up upon shutdown.
        - None:
            TPOT does not use memory caching.

    preprocessing : bool or BaseEstimator/Pipeline,
        EXPERIMENTAL
        A pipeline that will be used to preprocess the data before CV.
        - bool : If True, will use a default preprocessing pipeline.
        - Pipeline : If an instance of a pipeline is given, will use that pipeline as the preprocessing pipeline.

    population_size : int, default=50
        Size of the population

    initial_population_size : int, default=None
        Size of the initial population. If None, population_size will be used.

    population_scaling : int, default=0.5
        Scaling factor to use when determining how fast we move the threshold moves from the start to end percentile.

    generations_until_end_population : int, default=1
        Number of generations until the population size reaches population_size

    generations : int, default=50
        Number of generations to run

    max_time_seconds : float, default=float("inf")
        Maximum time to run the optimization. If none or inf, will run until the end of the generations.

    max_eval_time_seconds : float, default=60*5
        Maximum time to evaluate a single individual. If none or inf, there will be no time limit per evaluation.

    validation_strategy : str, default='none'
        EXPERIMENTAL The validation strategy to use for selecting the final pipeline from the population. TPOT2 may overfit the cross validation score. A second validation set can be used to select the final pipeline.
        - 'auto' : Automatically determine the validation strategy based on the dataset shape.
        - 'reshuffled' : Use the same data for cross validation and final validation, but with different splits for the folds. This is the default for small datasets.
        - 'split' : Use a separate validation set for final validation. Data will be split according to validation_fraction. This is the default for medium datasets.
        - 'none' : Do not use a separate validation set for final validation. Select based on the original cross-validation score. This is the default for large datasets.

    validation_fraction : float, default=0.2
      EXPERIMENTAL The fraction of the dataset to use for the validation set when validation_strategy is 'split'. Must be between 0 and 1.

    disable_label_encoder : bool, default=False
        If True, TPOT will check if the target needs to be relabeled to be sequential ints from 0 to N. This is necessary for XGBoost compatibility. If the labels need to be encoded, TPOT2 will use sklearn.preprocessing.LabelEncoder to encode the labels. The encoder can be accessed via the self.label_encoder_ attribute.
        If False, no additional label encoders will be used.

    early_stop : int, default=None
        Number of generations without improvement before early stopping. All objectives must have converged within the tolerance for this to be triggered.

    scorers_early_stop_tol :
        -list of floats
            list of tolerances for each scorer. If the difference between the best score and the current score is less than the tolerance, the individual is considered to have converged
            If an index of the list is None, that item will not be used for early stopping
        -int
            If an int is given, it will be used as the tolerance for all objectives

    other_objectives_early_stop_tol :
        -list of floats
            list of tolerances for each of the other objective function. If the difference between the best score and the current score is less than the tolerance, the individual is considered to have converged
            If an index of the list is None, that item will not be used for early stopping
        -int
            If an int is given, it will be used as the tolerance for all objectives

    threshold_evaluation_early_stop : list [start, end], default=None
        starting and ending percentile to use as a threshold for the evaluation early stopping.
        Values between 0 and 100.

    threshold_evaluation_scaling : float [0,inf), default=0.5
        A scaling factor to use when determining how fast we move the threshold moves from the start to end percentile.
        Must be greater than zero. Higher numbers will move the threshold to the end faster.

    selection_evaluation_early_stop : list, default=None
        A lower and upper percent of the population size to select each round of CV.
        Values between 0 and 1.

    selection_evaluation_scaling : float, default=0.5
        A scaling factor to use when determining how fast we move the threshold moves from the start to end percentile.
        Must be greater than zero. Higher numbers will move the threshold to the end faster.

    min_history_threshold : int, default=0
        The minimum number of previous scores needed before using threshold early stopping.

    survival_percentage : float, default=1
        Percentage of the population size to utilize for mutation and crossover at the beginning of the generation. The rest are discarded. Individuals are selected with the selector passed into survival_selector. The value of this parameter must be between 0 and 1, inclusive.
        For example, if the population size is 100 and the survival percentage is .5, 50 individuals will be selected with NSGA2 from the existing population. These will be used for mutation and crossover to generate the next 100 individuals for the next generation. The remainder are discarded from the live population. In the next generation, there will now be the 50 parents + the 100 individuals for a total of 150. Surivival percentage is based of the population size parameter and not the existing population size (current population size when using successive halving). Therefore, in the next generation we will still select 50 individuals from the currently existing 150.

    crossover_probability : float, default=.2
        Probability of generating a new individual by crossover between two individuals.

    mutate_probability : float, default=.7
        Probability of generating a new individual by crossover between one individuals.

    mutate_then_crossover_probability : float, default=.05
        Probability of generating a new individual by mutating two individuals followed by crossover.

    crossover_then_mutate_probability : float, default=.05
        Probability of generating a new individual by crossover between two individuals followed by a mutation of the resulting individual.

    survival_selector : function, default=survival_select_NSGA2
        Function to use to select individuals for survival. Must take a matrix of scores and return selected indexes.
        Used to selected population_size * survival_percentage individuals at the start of each generation to use for mutation and crossover.

    parent_selector : function, default=parent_select_NSGA2
        Function to use to select pairs parents for crossover and individuals for mutation. Must take a matrix of scores and return selected indexes.

    budget_range : list [start, end], default=None
        A starting and ending budget to use for the budget scaling.

    budget_scaling float : [0,1], default=0.5
        A scaling factor to use when determining how fast we move the budget from the start to end budget.

    generations_until_end_budget : int, default=1
        The number of generations to run before reaching the max budget.

    stepwise_steps : int, default=1
        The number of staircase steps to take when scaling the budget and population size.


    n_jobs : int, default=1
        Number of processes to run in parallel.

    memory_limit : str, default="4GB"
        Memory limit for each job. See Dask [LocalCluster documentation](https://distributed.dask.org/en/stable/api.html#distributed.Client) for more information.

    client : dask.distributed.Client, default=None
        A dask client to use for parallelization. If not None, this will override the n_jobs and memory_limit parameters. If None, will create a new client with num_workers=n_jobs and memory_limit=memory_limit.

    processes : bool, default=True
        If True, will use multiprocessing to parallelize the optimization process. If False, will use threading.
        True seems to perform better. However, False is required for interactive debugging.


    warm_start : bool, default=False
        If True, will use the continue the evolutionary algorithm from the last generation of the previous run.

    subset_column : str or int, default=None
        EXPERIMENTAL The column to use for the subset selection. Must also pass in unique_subset_values to GraphIndividual to function.

    periodic_checkpoint_folder : str, default=None
        Folder to save the population to periodically. If None, no periodic saving will be done.
        If provided, training will resume from this checkpoint.

    callback : tpot2.CallBackInterface, default=None
        Callback object. Not implemented

    verbose : int, default=1
        How much information to print during the optimization process. Higher values include the information from lower values.
        0. nothing
        1. progress bar

        3. best individual
        4. warnings
        >=5. full warnings trace
        6. evaluations progress bar. (Temporary: This used to be 2. Currently, using evaluation progress bar may prevent some instances were we terminate a generation early due to it reaching max_time_seconds in the middle of a generation OR a pipeline failed to be terminated normally and we need to manually terminate it.)

    random_state : int, None, default=None
        A seed for reproducability of experiments. This value will be passed to numpy.random.default_rng() to create an instnce of the genrator to pass to other classes

        - int
            Will be used to create and lock in Generator instance with 'numpy.random.default_rng()'
        - None
            Will be used to create Generator for 'numpy.random.default_rng()' where a fresh, unpredictable entropy will be pulled from the OS

    Attributes
    ----------

    fitted_pipeline_ : GraphPipeline
        A fitted instance of the GraphPipeline that inherits from sklearn BaseEstimator. This is fitted on the full X, y passed to fit.

    evaluated_individuals : A pandas data frame containing data for all evaluated individuals in the run.
        Columns:
        - *objective functions : The first few columns correspond to the passed in scorers and objective functions
        - Parents : A tuple containing the indexes of the pipelines used to generate the pipeline of that row. If NaN, this pipeline was generated randomly in the initial population.
        - Variation_Function : Which variation function was used to mutate or crossover the parents. If NaN, this pipeline was generated randomly in the initial population.
        - Individual : The internal representation of the individual that is used during the evolutionary algorithm. This is not an sklearn BaseEstimator.
        - Generation : The generation the pipeline first appeared.
        - Pareto_Front	: The nondominated front that this pipeline belongs to. 0 means that its scores is not strictly dominated by any other individual.
                        To save on computational time, the best frontier is updated iteratively each generation.
                        The pipelines with the 0th pareto front do represent the exact best frontier. However, the pipelines with pareto front >= 1 are only in reference to the other pipelines in the final population.
                        All other pipelines are set to NaN.
        - Instance	: The unfitted GraphPipeline BaseEstimator.
        - *validation objective functions : Objective function scores evaluated on the validation set.
        - Validation_Pareto_Front : The full pareto front calculated on the validation set. This is calculated for all pipelines with Pareto_Front equal to 0. Unlike the Pareto_Front which only calculates the frontier and the final population, the Validation Pareto Front is calculated for all pipelines tested on the validation set.

    pareto_front : The same pandas dataframe as evaluated individuals, but containing only the frontier pareto front pipelines.
    '''

    # sklearn BaseEstimator must have a corresponding attribute for each parameter.
    # These should not be modified once set.

    self.scorers = scorers
    self.scorers_weights = scorers_weights
    self.classification = classification
    self.cv = cv
    self.other_objective_functions = other_objective_functions
    self.other_objective_functions_weights = other_objective_functions_weights
    self.objective_function_names = objective_function_names
    self.bigger_is_better = bigger_is_better
    self.hyperparameter_probability = hyperparameter_probability
    self.hyper_node_probability = hyper_node_probability
    self.hyperparameter_alpha = hyperparameter_alpha
    self.max_size = max_size
    self.linear_pipeline = linear_pipeline
    self.root_config_dict= root_config_dict
    self.inner_config_dict= inner_config_dict
    self.leaf_config_dict= leaf_config_dict
    self.cross_val_predict_cv = cross_val_predict_cv
    self.categorical_features = categorical_features
    self.subsets = subsets
    self.memory = memory
    self.preprocessing = preprocessing
    self.validation_strategy = validation_strategy
    self.validation_fraction = validation_fraction
    self.disable_label_encoder = disable_label_encoder
    self.population_size = population_size
    self.initial_population_size = initial_population_size
    self.population_scaling = population_scaling
    self.generations_until_end_population = generations_until_end_population
    self.generations = generations
    self.early_stop = early_stop
    self.scorers_early_stop_tol = scorers_early_stop_tol
    self.other_objectives_early_stop_tol = other_objectives_early_stop_tol
    self.max_time_seconds = max_time_seconds
    self.max_eval_time_seconds = max_eval_time_seconds
    self.n_jobs= n_jobs
    self.memory_limit = memory_limit
    self.client = client
    self.survival_percentage = survival_percentage
    self.crossover_probability = crossover_probability
    self.mutate_probability = mutate_probability
    self.mutate_then_crossover_probability= mutate_then_crossover_probability
    self.crossover_then_mutate_probability= crossover_then_mutate_probability
    self.survival_selector=survival_selector
    self.parent_selector=parent_selector
    self.budget_range = budget_range
    self.budget_scaling = budget_scaling
    self.generations_until_end_budget = generations_until_end_budget
    self.stepwise_steps = stepwise_steps
    self.threshold_evaluation_early_stop =threshold_evaluation_early_stop
    self.threshold_evaluation_scaling =  threshold_evaluation_scaling
    self.min_history_threshold = min_history_threshold
    self.selection_evaluation_early_stop = selection_evaluation_early_stop
    self.selection_evaluation_scaling =  selection_evaluation_scaling
    self.warm_start = warm_start
    self.subset_column = subset_column
    self.verbose = verbose
    self.periodic_checkpoint_folder = periodic_checkpoint_folder
    self.callback = callback
    self.processes = processes


    self.scatter = scatter

    self.optuna_optimize_pareto_front = optuna_optimize_pareto_front
    self.optuna_optimize_pareto_front_trials = optuna_optimize_pareto_front_trials
    self.optuna_optimize_pareto_front_timeout = optuna_optimize_pareto_front_timeout
    self.optuna_storage = optuna_storage

    # create random number generator based on rng_seed
    self.rng = np.random.default_rng(random_state)
    # save random state passed to us for other functions that use random_state
    self.random_state = random_state
    # set the numpy seed so anything using it will be consistent as well
    np.random.seed(random_state)

    #Initialize other used params


    if self.initial_population_size is None:
        self._initial_population_size = self.population_size
    else:
        self._initial_population_size = self.initial_population_size

    if isinstance(self.scorers, str):
        self._scorers = [self.scorers]

    elif callable(self.scorers):
        self._scorers = [self.scorers]
    else:
        self._scorers = self.scorers

    self._scorers = [sklearn.metrics.get_scorer(scoring) for scoring in self._scorers]
    self._scorers_early_stop_tol = self.scorers_early_stop_tol

    self._evolver = tpot2.evolvers.BaseEvolver

    self.objective_function_weights = [*scorers_weights, *other_objective_functions_weights]


    if self.objective_function_names is None:
        obj_names = [f.__name__ for f in other_objective_functions]
    else:
        obj_names = self.objective_function_names
    self.objective_names = [f._score_func.__name__ if hasattr(f,"_score_func") else f.__name__ for f in self._scorers] + obj_names


    if not isinstance(self.other_objectives_early_stop_tol, list):
        self._other_objectives_early_stop_tol = [self.other_objectives_early_stop_tol for _ in range(len(self.other_objective_functions))]
    else:
        self._other_objectives_early_stop_tol = self.other_objectives_early_stop_tol

    if not isinstance(self._scorers_early_stop_tol, list):
        self._scorers_early_stop_tol = [self._scorers_early_stop_tol for _ in range(len(self._scorers))]
    else:
        self._scorers_early_stop_tol = self._scorers_early_stop_tol

    self.early_stop_tol = [*self._scorers_early_stop_tol, *self._other_objectives_early_stop_tol]

    self._evolver_instance = None
    self.evaluated_individuals = None


    self.label_encoder_ = None


    set_dask_settings()