Population
This file is part of the TPOT library.
The current version of TPOT was developed at Cedars-Sinai by: - Pedro Henrique Ribeiro (https://github.com/perib, https://www.linkedin.com/in/pedro-ribeiro/) - Anil Saini (anil.saini@cshs.org) - Jose Hernandez (jgh9094@gmail.com) - Jay Moran (jay.moran@cshs.org) - Nicholas Matsumoto (nicholas.matsumoto@cshs.org) - Hyunjun Choi (hyunjun.choi@cshs.org) - Miguel E. Hernandez (miguel.e.hernandez@cshs.org) - Jason Moore (moorejh28@gmail.com)
The original version of TPOT was primarily developed at the University of Pennsylvania by: - Randal S. Olson (rso@randalolson.com) - Weixuan Fu (weixuanf@upenn.edu) - Daniel Angell (dpa34@drexel.edu) - Jason Moore (moorejh28@gmail.com) - and many more generous open-source contributors
TPOT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
TPOT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along with TPOT. If not, see http://www.gnu.org/licenses/.
Population
¶
Primary usage is to keep track of evaluated individuals
Parameters:
Name | Type | Description | Default |
---|---|---|---|
initial_population |
list of BaseIndividuals
|
Initial population to start with. If None, start with an empty population. |
list of BaseIndividuals
|
use_unique_id |
Bool
|
If True, individuals are treated as unique if they have the same unique_id(). If False, all new individuals are treated as unique. |
Bool
|
callback |
function
|
NOT YET IMPLEMENTED A function to call after each generation. The function should take a Population object as its only argument. |
function
|
Attributes:
Name | Type | Description |
---|---|---|
population |
{list of BaseIndividuals}
|
The current population of individuals. Contains the live instances of BaseIndividuals. |
evaluated_individuals |
{dict}
|
A dictionary of dictionaries. The keys are the unique_id() or self of each BaseIndividual. Can be thought of as a table with the unique_id() as the row index and the inner dictionary keys as the columns. |
Source code in tpot2/population.py
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
|
add_to_population(individuals, rng, keep_repeats=False, mutate_until_unique=True)
¶
Add individuals to the live population. Add individuals to the evaluated_individuals if they are not already there.
Parameters:
individuals : {list of BaseIndividuals} The individuals to add to the live population. keep_repeats : {bool}, default=False If True, allow the population to have repeated individuals. If False, only add individuals that have not yet been added to geneology.
Source code in tpot2/population.py
create_offspring(parents_list, var_op_list, rng, add_to_population=True, keep_repeats=False, mutate_until_unique=True, n_jobs=1)
¶
parents_list: a list of lists of parents. var_op_list: a list of var_ops to apply to each list of parents. Should be the same length as parents_list.
for example: parents_list = [[parent1, parent2], [parent3]] var_op_list = ["crossover", "mutate"]
This will apply crossover to parent1 and parent2 and mutate to parent3.
Creates offspring from parents using the var_op_list. If string, will use a built in method - "crossover" : crossover - "mutate" : mutate - "mutate_and_crossover" : mutate_and_crossover - "cross_and_mutate" : cross_and_mutate
Source code in tpot2/population.py
get_column(individual, column_names=None, to_numpy=True)
¶
Update the column_name column in the evaluated_individuals with the data. If the data is a list, it must be the same length as the evaluated_individuals. If the data is a single value, it will be applied to all individuals in the evaluated_individuals.
Source code in tpot2/population.py
remove_invalid_from_population(column_names, invalid_value='INVALID')
¶
Remove individuals from the live population if either do not have a value in the column_name column or if the value contains np.nan.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
column_name |
str
|
The name of the column to check for np.nan values. |
str
|
Returns:
Type | Description |
---|---|
None
|
|
Source code in tpot2/population.py
set_population(new_population, rng, keep_repeats=True)
¶
sets population to new population for selection?
Source code in tpot2/population.py
update_column(individual, column_names, data)
¶
Update the column_name column in the evaluated_individuals with the data. If the data is a list, it must be the same length as the evaluated_individuals. If the data is a single value, it will be applied to all individuals in the evaluated_individuals.