Skip to content

Graph

This file is part of the TPOT library.

The current version of TPOT was developed at Cedars-Sinai by: - Pedro Henrique Ribeiro (https://github.com/perib, https://www.linkedin.com/in/pedro-ribeiro/) - Anil Saini (anil.saini@cshs.org) - Jose Hernandez (jgh9094@gmail.com) - Jay Moran (jay.moran@cshs.org) - Nicholas Matsumoto (nicholas.matsumoto@cshs.org) - Hyunjun Choi (hyunjun.choi@cshs.org) - Miguel E. Hernandez (miguel.e.hernandez@cshs.org) - Jason Moore (moorejh28@gmail.com)

The original version of TPOT was primarily developed at the University of Pennsylvania by: - Randal S. Olson (rso@randalolson.com) - Weixuan Fu (weixuanf@upenn.edu) - Daniel Angell (dpa34@drexel.edu) - Jason Moore (moorejh28@gmail.com) - and many more generous open-source contributors

TPOT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

TPOT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with TPOT. If not, see http://www.gnu.org/licenses/.

GraphKey

A class that can be used as a key for a graph.

Parameters:

Name Type Description Default
graph Graph

The graph to use as a key. Node Attributes are used for the hash.

required
matched_label str

The node attribute to consider for the hash.

'label'
Source code in tpot2/search_spaces/pipelines/graph.py
class GraphKey():
    '''
    A class that can be used as a key for a graph.

    Parameters
    ----------
    graph : (nx.Graph)
        The graph to use as a key. Node Attributes are used for the hash.
    matched_label : (str)
        The node attribute to consider for the hash.
    '''

    def __init__(self, graph, matched_label='label') -> None:#['hyperparameters', 'method_class']) -> None:


        self.graph = graph
        self.matched_label = matched_label
        self.node_match = partial(node_match, matched_labels=[matched_label])
        self.key = int(nx.weisfeiler_lehman_graph_hash(self.graph, node_attr=self.matched_label),16) #hash(tuple(sorted([val for (node, val) in self.graph.degree()])))


    #If hash is different, node is definitely different
    # https://arxiv.org/pdf/2002.06653.pdf
    def __hash__(self) -> int:

        return self.key

    #If hash is same, use __eq__ to know if they are actually different
    def __eq__(self, other):
        return nx.is_isomorphic(self.graph, other.graph, node_match=self.node_match)

GraphPipelineIndividual

Bases: SklearnIndividual

Defines a search space of pipelines in the shape of a Directed Acyclic Graphs. The search spaces for root, leaf, and inner nodes can be defined separately if desired. Each graph will have a single root serving as the final estimator which is drawn from the root_search_space. If the leaf_search_space is defined, all leaves in the pipeline will be drawn from that search space. If the leaf_search_space is not defined, all leaves will be drawn from the inner_search_space. Nodes that are not leaves or roots will be drawn from the inner_search_space. If the inner_search_space is not defined, there will be no inner nodes.

cross_val_predict_cv, method, memory, and use_label_encoder are passed to the GraphPipeline object when the pipeline is exported and not directly used in the search space.

Exports to a GraphPipeline object.

Parameters:

Name Type Description Default
root_search_space SearchSpace

The search space for the root node of the graph. This node will be the final estimator in the pipeline.

required
inner_search_space SearchSpace

The search space for the inner nodes of the graph. If not defined, there will be no inner nodes.

None
leaf_search_space SearchSpace

The search space for the leaf nodes of the graph. If not defined, the leaf nodes will be drawn from the inner_search_space.

None
crossover_same_depth bool

If True, crossover will only occur between nodes at the same depth in the graph. If False, crossover will occur between nodes at any depth.

False
cross_val_predict_cv Union[int, Callable]

Determines the cross-validation splitting strategy used in inner classifiers or regressors

0
method str

The prediction method to use for the inner classifiers or regressors. If 'auto', it will try to use predict_proba, decision_function, or predict in that order.

'auto'
memory

Used to cache the input and outputs of nodes to prevent refitting or computationally heavy transformations. By default, no caching is performed. If a string is given, it is the path to the caching directory.

required
use_label_encoder bool

If True, the label encoder is used to encode the labels to be 0 to N. If False, the label encoder is not used. Mainly useful for classifiers (XGBoost) that require labels to be ints from 0 to N. Can also be a sklearn.preprocessing.LabelEncoder object. If so, that label encoder is used.

False
rng

Seed for sampling the first graph instance.

None
Source code in tpot2/search_spaces/pipelines/graph.py
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
class GraphPipelineIndividual(SklearnIndividual):
    """
        Defines a search space of pipelines in the shape of a Directed Acyclic Graphs. The search spaces for root, leaf, and inner nodes can be defined separately if desired.
        Each graph will have a single root serving as the final estimator which is drawn from the `root_search_space`. If the `leaf_search_space` is defined, all leaves 
        in the pipeline will be drawn from that search space. If the `leaf_search_space` is not defined, all leaves will be drawn from the `inner_search_space`.
        Nodes that are not leaves or roots will be drawn from the `inner_search_space`. If the `inner_search_space` is not defined, there will be no inner nodes.

        `cross_val_predict_cv`, `method`, `memory`, and `use_label_encoder` are passed to the GraphPipeline object when the pipeline is exported and not directly used in the search space.

        Exports to a GraphPipeline object.

        Parameters
        ----------

        root_search_space: SearchSpace
            The search space for the root node of the graph. This node will be the final estimator in the pipeline.

        inner_search_space: SearchSpace, optional
            The search space for the inner nodes of the graph. If not defined, there will be no inner nodes.

        leaf_search_space: SearchSpace, optional
            The search space for the leaf nodes of the graph. If not defined, the leaf nodes will be drawn from the inner_search_space.

        crossover_same_depth: bool, optional
            If True, crossover will only occur between nodes at the same depth in the graph. If False, crossover will occur between nodes at any depth.

        cross_val_predict_cv: int, cross-validation generator or an iterable, optional
            Determines the cross-validation splitting strategy used in inner classifiers or regressors

        method: str, optional
            The prediction method to use for the inner classifiers or regressors. If 'auto', it will try to use predict_proba, decision_function, or predict in that order.

        memory: str or object with the joblib.Memory interface, optional
            Used to cache the input and outputs of nodes to prevent refitting or computationally heavy transformations. By default, no caching is performed. If a string is given, it is the path to the caching directory.

        use_label_encoder: bool, optional
            If True, the label encoder is used to encode the labels to be 0 to N. If False, the label encoder is not used.
            Mainly useful for classifiers (XGBoost) that require labels to be ints from 0 to N.
            Can also be a sklearn.preprocessing.LabelEncoder object. If so, that label encoder is used.

        rng: int, RandomState instance or None, optional
            Seed for sampling the first graph instance. 

        """

    def __init__(
            self,  
            root_search_space: SearchSpace, 
            leaf_search_space: SearchSpace = None, 
            inner_search_space: SearchSpace = None, 
            max_size: int = np.inf,
            crossover_same_depth: bool = False,
            cross_val_predict_cv: Union[int, Callable] = 0, #signature function(estimator, X, y=none)
            method: str = 'auto',
            use_label_encoder: bool = False,
            rng=None):

        super().__init__()

        self.__debug = False

        rng = np.random.default_rng(rng)

        self.root_search_space = root_search_space
        self.leaf_search_space = leaf_search_space
        self.inner_search_space = inner_search_space
        self.max_size = max_size
        self.crossover_same_depth = crossover_same_depth

        self.cross_val_predict_cv = cross_val_predict_cv
        self.method = method
        self.use_label_encoder = use_label_encoder

        self.root = self.root_search_space.generate(rng)
        self.graph = nx.DiGraph()
        self.graph.add_node(self.root)

        if self.leaf_search_space is not None:
            self.leaf = self.leaf_search_space.generate(rng)
            self.graph.add_node(self.leaf)
            self.graph.add_edge(self.root, self.leaf)

        if self.inner_search_space is None and self.leaf_search_space is None:
            self.mutate_methods_list = [self._mutate_node]
            self.crossover_methods_list = [self._crossover_swap_branch,]#[self._crossover_swap_branch, self._crossover_swap_node, self._crossover_take_branch]  #TODO self._crossover_nodes, 

        else:
            self.mutate_methods_list = [self._mutate_insert_leaf, self._mutate_insert_inner_node, self._mutate_remove_node, self._mutate_node, self._mutate_insert_bypass_node]
            self.crossover_methods_list = [self._crossover_swap_branch, self._crossover_nodes, self._crossover_take_branch ]#[self._crossover_swap_branch, self._crossover_swap_node, self._crossover_take_branch]  #TODO self._crossover_nodes, 

        self.merge_duplicated_nodes_toggle = True

        self.graphkey = None


    def mutate(self, rng=None):
        rng = np.random.default_rng(rng)
        rng.shuffle(self.mutate_methods_list)
        for mutate_method in self.mutate_methods_list:
            if mutate_method(rng=rng):

                if self.merge_duplicated_nodes_toggle:
                    self._merge_duplicated_nodes()

                if self.__debug:
                    print(mutate_method)

                    if self.root not in self.graph.nodes:
                        print('lost root something went wrong with ', mutate_method)

                    if len(self.graph.predecessors(self.root)) > 0:
                        print('root has parents ', mutate_method)

                    if any([n in nx.ancestors(self.graph,n) for n in self.graph.nodes]):
                        print('a node is connecting to itself...')

                    if self.__debug:
                        try:
                            nx.find_cycle(self.graph)
                            print('something went wrong with ', mutate_method)
                        except:
                            pass

                self.graphkey = None

        return False




    def _mutate_insert_leaf(self, rng=None):
        rng = np.random.default_rng(rng)
        if self.max_size > self.graph.number_of_nodes():
            sorted_nodes_list = list(self.graph.nodes)
            rng.shuffle(sorted_nodes_list) #TODO: sort by number of children and/or parents? bias model one way or another
            for node in sorted_nodes_list:
                #if leafs are protected, check if node is a leaf
                #if node is a leaf, skip because we don't want to add node on top of node
                if (self.leaf_search_space is not None #if leafs are protected
                    and   len(list(self.graph.successors(node))) == 0 #if node is leaf
                    and  len(list(self.graph.predecessors(node))) > 0 #except if node is root, in which case we want to add a leaf even if it happens to be a leaf too
                    ):

                    continue

                #If node *is* the root or is not a leaf, add leaf node. (dont want to add leaf on top of leaf)
                if self.leaf_search_space is not None:
                    new_node = self.leaf_search_space.generate(rng)
                else:
                    new_node = self.inner_search_space.generate(rng)

                self.graph.add_node(new_node)
                self.graph.add_edge(node, new_node)
                return True

        return False

    def _mutate_insert_inner_node(self, rng=None):
        """
        Finds an edge in the graph and inserts a new node between the two nodes. Removes the edge between the two nodes.
        """
        rng = np.random.default_rng(rng)
        if self.max_size > self.graph.number_of_nodes():
            sorted_nodes_list = list(self.graph.nodes)
            sorted_nodes_list2 = list(self.graph.nodes)
            rng.shuffle(sorted_nodes_list) #TODO: sort by number of children and/or parents? bias model one way or another
            rng.shuffle(sorted_nodes_list2)
            for node in sorted_nodes_list:
                #loop through children of node
                for child_node in list(self.graph.successors(node)):

                    if child_node is not node and child_node not in nx.ancestors(self.graph, node):
                        if self.leaf_search_space is not None:
                            #If if we are protecting leafs, dont add connection into a leaf
                            if len(list(nx.descendants(self.graph,node))) ==0 :
                                continue

                        new_node = self.inner_search_space.generate(rng)

                        self.graph.add_node(new_node)
                        self.graph.add_edges_from([(node, new_node), (new_node, child_node)])
                        self.graph.remove_edge(node, child_node)
                        return True

        return False


    def _mutate_remove_node(self, rng=None):
        '''
        Removes a randomly chosen node and connects its parents to its children.
        If the node is the only leaf for an inner node and 'leaf_search_space' is not none, we do not remove it.
        '''
        rng = np.random.default_rng(rng)
        nodes_list = list(self.graph.nodes)
        nodes_list.remove(self.root)
        leaves = get_leaves(self.graph)

        while len(nodes_list) > 0:
            node = rng.choice(nodes_list)
            nodes_list.remove(node)

            if self.leaf_search_space is not None and len(list(nx.descendants(self.graph,node))) == 0 : #if the node is a leaf
                if len(leaves) <= 1:
                    continue #dont remove the last leaf
                leaf_parents = self.graph.predecessors(node)

                # if any of the parents of the node has one one child, continue
                if any([len(list(self.graph.successors(lp))) < 2 for lp in leaf_parents]): #dont remove a leaf if it is the only input into another node.
                    continue

                remove_and_stitch(self.graph, node)
                remove_nodes_disconnected_from_node(self.graph, self.root)
                return True

            else:
                remove_and_stitch(self.graph, node)
                remove_nodes_disconnected_from_node(self.graph, self.root)
                return True

        return False



    def _mutate_node(self, rng=None):
        '''
        Mutates the hyperparameters for a randomly chosen node in the graph.
        '''
        rng = np.random.default_rng(rng)
        sorted_nodes_list = list(self.graph.nodes)
        rng.shuffle(sorted_nodes_list)
        completed_one = False
        for node in sorted_nodes_list:
            if node.mutate(rng):
                return True
        return False

    def _mutate_remove_edge(self, rng=None):
        '''
        Deletes an edge as long as deleting that edge does not make the graph disconnected.
        '''
        rng = np.random.default_rng(rng)
        sorted_nodes_list = list(self.graph.nodes)
        rng.shuffle(sorted_nodes_list)
        for child_node in sorted_nodes_list:
            parents = list(self.graph.predecessors(child_node))
            if len(parents) > 1: # if it has more than one parent, you can remove an edge (if this is the only child of a node, it will become a leaf)

                for parent_node in parents:
                    # if removing the egde will make the parent_node a leaf node, skip
                    if self.leaf_search_space is not None and len(list(self.graph.successors(parent_node))) < 2:
                        continue

                    self.graph.remove_edge(parent_node, child_node)
                    return True
        return False   

    def _mutate_add_edge(self, rng=None):
        '''
        Randomly add an edge from a node to another node that is not an ancestor of the first node.
        '''
        rng = np.random.default_rng(rng)
        sorted_nodes_list = list(self.graph.nodes)
        rng.shuffle(sorted_nodes_list)
        for child_node in sorted_nodes_list:
            for parent_node in sorted_nodes_list:
                if self.leaf_search_space is not None:
                    if len(list(self.graph.successors(parent_node))) == 0:
                        continue

                # skip if
                # - parent and child are the same node
                # - edge already exists
                # - child is an ancestor of parent
                if  (child_node is not parent_node) and not self.graph.has_edge(parent_node,child_node) and (child_node not in nx.ancestors(self.graph, parent_node)):
                    self.graph.add_edge(parent_node,child_node)
                    return True

        return False

    def _mutate_insert_bypass_node(self, rng=None):
        """
        Pick two nodes (doesn't necessarily need to be connected). Create a new node. connect one node to the new node and the new node to the other node.
        Does not remove any edges.
        """
        rng = np.random.default_rng(rng)
        if self.max_size > self.graph.number_of_nodes():
            sorted_nodes_list = list(self.graph.nodes)
            sorted_nodes_list2 = list(self.graph.nodes)
            rng.shuffle(sorted_nodes_list) #TODO: sort by number of children and/or parents? bias model one way or another
            rng.shuffle(sorted_nodes_list2)
            for node in sorted_nodes_list:
                for child_node in sorted_nodes_list2:
                    if child_node is not node and child_node not in nx.ancestors(self.graph, node):
                        if self.leaf_search_space is not None:
                            #If if we are protecting leafs, dont add connection into a leaf
                            if len(list(nx.descendants(self.graph,node))) ==0 :
                                continue

                        new_node = self.inner_search_space.generate(rng)

                        self.graph.add_node(new_node)
                        self.graph.add_edges_from([(node, new_node), (new_node, child_node)])
                        return True

        return False


    def crossover(self, ind2, rng=None):
        '''
        self is the first individual, ind2 is the second individual
        If crossover_same_depth, it will select graphindividuals at the same recursive depth.
        Otherwise, it will select graphindividuals randomly from the entire graph and its subgraphs.

        This does not impact graphs without subgraphs. And it does not impacts nodes that are not graphindividuals. Cros
        '''

        rng = np.random.default_rng(rng)

        rng.shuffle(self.crossover_methods_list)

        finished = False

        for crossover_method in self.crossover_methods_list:
            if crossover_method(ind2, rng=rng):
                self._merge_duplicated_nodes()
                finished = True
                break

        if self.__debug:
            try:
                nx.find_cycle(self.graph)
                print('something went wrong with ', crossover_method)
            except:
                pass

        if finished:
            self.graphkey = None

        return finished


    def _crossover_swap_branch(self, G2, rng=None):
        '''
        swaps a branch from parent1 with a branch from parent2. does not modify parent2
        '''
        rng = np.random.default_rng(rng)

        if self.crossover_same_depth:
            pair_gen = select_nodes_same_depth(self.graph, self.root, G2.graph, G2.root, rng=rng)
        else:
            pair_gen = select_nodes_randomly(self.graph, G2.graph, rng=rng)

        for node1, node2 in pair_gen:
            #TODO: if root is in inner_search_space, then do use it?
            if node1 is self.root or node2 is G2.root: #dont want to add root as inner node
                continue

            #check if node1 is a leaf and leafs are protected, don't add an input to the leave
            if self.leaf_search_space is not None: #if we are protecting leaves,
                node1_is_leaf = len(list(self.graph.successors(node1))) == 0
                node2_is_leaf = len(list(G2.graph.successors(node2))) == 0
                #if not ((node1_is_leaf and node1_is_leaf) or (not node1_is_leaf and not node2_is_leaf)): #if node1 is a leaf
                #if (node1_is_leaf and (not node2_is_leaf)) or ( (not node1_is_leaf) and node2_is_leaf):
                if not node1_is_leaf:
                    #only continue if node1 and node2 are both leaves or both not leaves
                    continue

            temp_graph_1 = self.graph.copy()
            temp_graph_1.remove_node(node1)
            remove_nodes_disconnected_from_node(temp_graph_1, self.root)

            #isolating the branch
            branch2 = G2.graph.copy()
            n2_descendants = nx.descendants(branch2,node2)
            for n in list(branch2.nodes):
                if n not in n2_descendants and n is not node2: #removes all nodes not in the branch
                    branch2.remove_node(n)

            branch2 = copy.deepcopy(branch2)
            branch2_root = get_roots(branch2)[0]
            temp_graph_1.add_edges_from(branch2.edges)
            for p in list(self.graph.predecessors(node1)):
                temp_graph_1.add_edge(p,branch2_root)

            if temp_graph_1.number_of_nodes() > self.max_size:
                continue

            self.graph = temp_graph_1

            return True
        return False


    def _crossover_take_branch(self, G2, rng=None):
        '''
        Takes a subgraph from Parent2 and add it to a randomly chosen node in Parent1.
        '''
        rng = np.random.default_rng(rng)

        if self.crossover_same_depth:
            pair_gen = select_nodes_same_depth(self.graph, self.root, G2.graph, G2.root, rng=rng)
        else:
            pair_gen = select_nodes_randomly(self.graph, G2.graph, rng=rng)

        for node1, node2 in pair_gen:
            #TODO: if root is in inner_search_space, then do use it?
            if node2 is G2.root: #dont want to add root as inner node
                continue


            #check if node1 is a leaf and leafs are protected, don't add an input to the leave
            if self.leaf_search_space is not None and len(list(self.graph.successors(node1))) == 0:
                continue

            #icheck if node2 is graph individual
            # if isinstance(node2,GraphIndividual):
            #     if not ((isinstance(node2,GraphIndividual) and ("Recursive" in self.inner_search_space or "Recursive" in self.leaf_search_space))):
            #         continue

            #isolating the branch
            branch2 = G2.graph.copy()
            n2_descendants = nx.descendants(branch2,node2)
            for n in list(branch2.nodes):
                if n not in n2_descendants and n is not node2: #removes all nodes not in the branch
                    branch2.remove_node(n)

            #if node1 plus node2 branch has more than max_children, skip
            if branch2.number_of_nodes() + self.graph.number_of_nodes() > self.max_size:
                continue

            branch2 = copy.deepcopy(branch2)
            branch2_root = get_roots(branch2)[0]
            self.graph.add_edges_from(branch2.edges)
            self.graph.add_edge(node1,branch2_root)

            return True
        return False



    def _crossover_nodes(self, G2, rng=None):
        '''
        Swaps the hyperparamters of one randomly chosen node in Parent1 with the hyperparameters of randomly chosen node in Parent2.
        '''
        rng = np.random.default_rng(rng)

        if self.crossover_same_depth:
            pair_gen = select_nodes_same_depth(self.graph, self.root, G2.graph, G2.root, rng=rng)
        else:
            pair_gen = select_nodes_randomly(self.graph, G2.graph, rng=rng)

        for node1, node2 in pair_gen:

            #if both nodes are leaves
            if len(list(self.graph.successors(node1)))==0 and len(list(G2.graph.successors(node2)))==0:
                if node1.crossover(node2):
                    return True


            #if both nodes are inner nodes
            if len(list(self.graph.successors(node1)))>0 and len(list(G2.graph.successors(node2)))>0:
                if len(list(self.graph.predecessors(node1)))>0 and len(list(G2.graph.predecessors(node2)))>0:
                    if node1.crossover(node2):
                        return True

            #if both nodes are root nodes
            if node1 is self.root and node2 is G2.root:
                if node1.crossover(node2):
                    return True


        return False

    #not including the nodes, just their children
    #Finds leaves attached to nodes and swaps them
    def _crossover_swap_leaf_at_node(self, G2, rng=None):
        rng = np.random.default_rng(rng)

        if self.crossover_same_depth:
            pair_gen = select_nodes_same_depth(self.graph, self.root, G2.graph, G2.root, rng=rng)
        else:
            pair_gen = select_nodes_randomly(self.graph, G2.graph, rng=rng)

        success = False
        for node1, node2 in pair_gen:
            # if leaves are protected node1 and node2 must both be leaves or both be inner nodes
            if self.leaf_search_space is not None and not (len(list(self.graph.successors(node1)))==0 ^ len(list(G2.graph.successors(node2)))==0):
                continue
            #self_leafs = [c for c in nx.descendants(self.graph,node1) if len(list(self.graph.successors(c)))==0 and c is not node1]
            node_leafs = [c for c in nx.descendants(G2.graph,node2) if len(list(G2.graph.successors(c)))==0 and c is not node2]

            # if len(self_leafs) >0:
            #     for c in self_leafs:
            #         if random.choice([True,False]):
            #             self.graph.remove_node(c)
            #             G2.graph.add_edge(node2, c)
            #             success = True

            if len(node_leafs) >0:
                for c in node_leafs:
                    if rng.choice([True,False]):
                        G2.graph.remove_node(c)
                        self.graph.add_edge(node1, c)
                        success = True

        return success



    #TODO edit so that G2 is not modified
    def _crossover_swap_node(self, G2, rng=None):
        '''
        Swaps randomly chosen node from Parent1 with a randomly chosen node from Parent2.
        '''
        rng = np.random.default_rng(rng)

        if self.crossover_same_depth:
            pair_gen = select_nodes_same_depth(self.graph, self.root, G2.graph, G2.root, rng=rng)
        else:
            pair_gen = select_nodes_randomly(self.graph, G2.graph, rng=rng)

        for node1, node2 in pair_gen:
            if node1 is self.root or node2 is G2.root: #TODO: allow root
                continue

            #if leaves are protected
            if self.leaf_search_space is not None:
                #if one node is a leaf, the other must be a leaf
                if not((len(list(self.graph.successors(node1)))==0) ^ (len(list(G2.graph.successors(node2)))==0)):
                    continue #only continue if both are leaves, or both are not leaves


            n1_s = self.graph.successors(node1)
            n1_p = self.graph.predecessors(node1)

            n2_s = G2.graph.successors(node2)
            n2_p = G2.graph.predecessors(node2)

            self.graph.remove_node(node1)
            G2.graph.remove_node(node2)

            self.graph.add_node(node2)

            self.graph.add_edges_from([ (node2, n) for n in n1_s])
            G2.graph.add_edges_from([ (node1, n) for n in n2_s])

            self.graph.add_edges_from([ (n, node2) for n in n1_p])
            G2.graph.add_edges_from([ (n, node1) for n in n2_p])

            return True

        return False


    def _merge_duplicated_nodes(self):

        graph_changed = False
        merged = False
        while(not merged):
            node_list = list(self.graph.nodes)
            merged = True
            for node, other_node in itertools.product(node_list, node_list):
                if node is other_node:
                    continue

                #If nodes are same class/hyperparameters
                if node.unique_id() == other_node.unique_id():
                    node_children = set(self.graph.successors(node))
                    other_node_children = set(self.graph.successors(other_node))
                    #if nodes have identical children, they can be merged
                    if node_children == other_node_children:
                        for other_node_parent in list(self.graph.predecessors(other_node)):
                            if other_node_parent not in self.graph.predecessors(node):
                                self.graph.add_edge(other_node_parent,node)

                        self.graph.remove_node(other_node)
                        merged=False
                        graph_changed = True
                        break

        return graph_changed


    def export_pipeline(self, memory=None, **kwargs):
        estimator_graph = self.graph.copy()

        #mapping = {node:node.method_class(**node.hyperparameters) for node in estimator_graph}
        label_remapping = {}
        label_to_instance = {}

        for node in estimator_graph:
            this_pipeline_node = node.export_pipeline(memory=memory, **kwargs)
            found_unique_label = False
            i=1
            while not found_unique_label:
                label = "{0}_{1}".format(this_pipeline_node.__class__.__name__, i)
                if label not in label_to_instance:
                    found_unique_label = True
                else:
                    i+=1

            label_remapping[node] = label
            label_to_instance[label] = this_pipeline_node

        estimator_graph = nx.relabel_nodes(estimator_graph, label_remapping)

        for label, instance in label_to_instance.items():
            estimator_graph.nodes[label]["instance"] = instance

        return tpot2.GraphPipeline(graph=estimator_graph, memory=memory, use_label_encoder=self.use_label_encoder, method=self.method, cross_val_predict_cv=self.cross_val_predict_cv)


    def plot(self):
        G = self.graph.reverse()
        #TODO clean this up
        try:
            pos = nx.planar_layout(G)  # positions for all nodes
        except:
            pos = nx.shell_layout(G)
        # nodes
        options = {'edgecolors': 'tab:gray', 'node_size': 800, 'alpha': 0.9}
        nodelist = list(G.nodes)
        node_color = [plt.cm.Set1(G.nodes[n]['recursive depth']) for n in G]

        fig, ax = plt.subplots()

        nx.draw(G, pos, nodelist=nodelist, node_color=node_color, ax=ax,  **options)


        '''edgelist = []
        for n in n1.node_set:
            for child in n.children:
                edgelist.append((n,child))'''

        # edges
        #nx.draw_networkx_edges(G, pos, width=3.0, arrows=True)
        '''nx.draw_networkx_edges(
            G,
            pos,
            edgelist=[edgelist],
            width=8,
            alpha=0.5,
            edge_color='tab:red',
        )'''



        # some math labels
        labels = {}
        for i, n in enumerate(G.nodes):
            labels[n] = n.method_class.__name__ + "\n" + str(n.hyperparameters)


        nx.draw_networkx_labels(G, pos, labels,ax=ax, font_size=7, font_color='black')

        plt.tight_layout()
        plt.axis('off')
        plt.show()


    def unique_id(self):
        if self.graphkey is None:
            #copy self.graph
            new_graph = self.graph.copy()
            for n in new_graph.nodes:
                new_graph.nodes[n]['label'] = n.unique_id()

            new_graph = nx.convert_node_labels_to_integers(new_graph)
            self.graphkey = GraphKey(new_graph)

        return self.graphkey

crossover(ind2, rng=None)

self is the first individual, ind2 is the second individual If crossover_same_depth, it will select graphindividuals at the same recursive depth. Otherwise, it will select graphindividuals randomly from the entire graph and its subgraphs.

This does not impact graphs without subgraphs. And it does not impacts nodes that are not graphindividuals. Cros

Source code in tpot2/search_spaces/pipelines/graph.py
def crossover(self, ind2, rng=None):
    '''
    self is the first individual, ind2 is the second individual
    If crossover_same_depth, it will select graphindividuals at the same recursive depth.
    Otherwise, it will select graphindividuals randomly from the entire graph and its subgraphs.

    This does not impact graphs without subgraphs. And it does not impacts nodes that are not graphindividuals. Cros
    '''

    rng = np.random.default_rng(rng)

    rng.shuffle(self.crossover_methods_list)

    finished = False

    for crossover_method in self.crossover_methods_list:
        if crossover_method(ind2, rng=rng):
            self._merge_duplicated_nodes()
            finished = True
            break

    if self.__debug:
        try:
            nx.find_cycle(self.graph)
            print('something went wrong with ', crossover_method)
        except:
            pass

    if finished:
        self.graphkey = None

    return finished

GraphSearchPipeline

Bases: SearchSpace

Source code in tpot2/search_spaces/pipelines/graph.py
class GraphSearchPipeline(SearchSpace):
    def __init__(self, 
        root_search_space: SearchSpace, 
        leaf_search_space: SearchSpace = None, 
        inner_search_space: SearchSpace = None, 
        max_size: int = np.inf,
        crossover_same_depth: bool = False,
        cross_val_predict_cv: Union[int, Callable] = 0, #signature function(estimator, X, y=none)
        method: str = 'auto',
        use_label_encoder: bool = False):

        """
        Defines a search space of pipelines in the shape of a Directed Acyclic Graphs. The search spaces for root, leaf, and inner nodes can be defined separately if desired.
        Each graph will have a single root serving as the final estimator which is drawn from the `root_search_space`. If the `leaf_search_space` is defined, all leaves 
        in the pipeline will be drawn from that search space. If the `leaf_search_space` is not defined, all leaves will be drawn from the `inner_search_space`.
        Nodes that are not leaves or roots will be drawn from the `inner_search_space`. If the `inner_search_space` is not defined, there will be no inner nodes.

        `cross_val_predict_cv`, `method`, `memory`, and `use_label_encoder` are passed to the GraphPipeline object when the pipeline is exported and not directly used in the search space.

        Exports to a GraphPipeline object.

        Parameters
        ----------

        root_search_space: SearchSpace
            The search space for the root node of the graph. This node will be the final estimator in the pipeline.

        inner_search_space: SearchSpace, optional
            The search space for the inner nodes of the graph. If not defined, there will be no inner nodes.

        leaf_search_space: SearchSpace, optional
            The search space for the leaf nodes of the graph. If not defined, the leaf nodes will be drawn from the inner_search_space.

        crossover_same_depth: bool, optional
            If True, crossover will only occur between nodes at the same depth in the graph. If False, crossover will occur between nodes at any depth.

        cross_val_predict_cv : int, default=0
            Number of folds to use for the cross_val_predict function for inner classifiers and regressors. Estimators will still be fit on the full dataset, but the following node will get the outputs from cross_val_predict.

            - 0-1 : When set to 0 or 1, the cross_val_predict function will not be used. The next layer will get the outputs from fitting and transforming the full dataset.
            - >=2 : When fitting pipelines with inner classifiers or regressors, they will still be fit on the full dataset.
                    However, the output to the next node will come from cross_val_predict with the specified number of folds.

        method: str, optional
            The prediction method to use for the inner classifiers or regressors. If 'auto', it will try to use predict_proba, decision_function, or predict in that order.

        memory: str or object with the joblib.Memory interface, optional
            Used to cache the input and outputs of nodes to prevent refitting or computationally heavy transformations. By default, no caching is performed. If a string is given, it is the path to the caching directory.

        use_label_encoder: bool, optional
            If True, the label encoder is used to encode the labels to be 0 to N. If False, the label encoder is not used.
            Mainly useful for classifiers (XGBoost) that require labels to be ints from 0 to N.
            Can also be a sklearn.preprocessing.LabelEncoder object. If so, that label encoder is used.

        """


        self.root_search_space = root_search_space
        self.leaf_search_space = leaf_search_space
        self.inner_search_space = inner_search_space
        self.max_size = max_size
        self.crossover_same_depth = crossover_same_depth

        self.cross_val_predict_cv = cross_val_predict_cv
        self.method = method
        self.use_label_encoder = use_label_encoder

    def generate(self, rng=None):
        rng = np.random.default_rng(rng)
        ind =  GraphPipelineIndividual(self.root_search_space, self.leaf_search_space, self.inner_search_space, self.max_size, self.crossover_same_depth, 
                                       self.cross_val_predict_cv, self.method, self.use_label_encoder, rng=rng)  
            # if user specified limit, grab a random number between that limit

        if self.max_size is None or self.max_size == np.inf:
            n_nodes = rng.integers(1, 5)
        else:
            n_nodes = min(rng.integers(1, self.max_size), 5)

        starting_ops = []
        if self.inner_search_space is not None:
            starting_ops.append(ind._mutate_insert_inner_node)
        if self.leaf_search_space is not None or self.inner_search_space is not None:
            starting_ops.append(ind._mutate_insert_leaf)
            n_nodes -= 1

        if len(starting_ops) > 0:
            for _ in range(n_nodes-1):
                func = rng.choice(starting_ops)
                func(rng=rng)

        ind._merge_duplicated_nodes()

        return ind

__init__(root_search_space, leaf_search_space=None, inner_search_space=None, max_size=np.inf, crossover_same_depth=False, cross_val_predict_cv=0, method='auto', use_label_encoder=False)

Defines a search space of pipelines in the shape of a Directed Acyclic Graphs. The search spaces for root, leaf, and inner nodes can be defined separately if desired. Each graph will have a single root serving as the final estimator which is drawn from the root_search_space. If the leaf_search_space is defined, all leaves in the pipeline will be drawn from that search space. If the leaf_search_space is not defined, all leaves will be drawn from the inner_search_space. Nodes that are not leaves or roots will be drawn from the inner_search_space. If the inner_search_space is not defined, there will be no inner nodes.

cross_val_predict_cv, method, memory, and use_label_encoder are passed to the GraphPipeline object when the pipeline is exported and not directly used in the search space.

Exports to a GraphPipeline object.

Parameters:

Name Type Description Default
root_search_space SearchSpace

The search space for the root node of the graph. This node will be the final estimator in the pipeline.

required
inner_search_space SearchSpace

The search space for the inner nodes of the graph. If not defined, there will be no inner nodes.

None
leaf_search_space SearchSpace

The search space for the leaf nodes of the graph. If not defined, the leaf nodes will be drawn from the inner_search_space.

None
crossover_same_depth bool

If True, crossover will only occur between nodes at the same depth in the graph. If False, crossover will occur between nodes at any depth.

False
cross_val_predict_cv int

Number of folds to use for the cross_val_predict function for inner classifiers and regressors. Estimators will still be fit on the full dataset, but the following node will get the outputs from cross_val_predict.

  • 0-1 : When set to 0 or 1, the cross_val_predict function will not be used. The next layer will get the outputs from fitting and transforming the full dataset.
  • =2 : When fitting pipelines with inner classifiers or regressors, they will still be fit on the full dataset. However, the output to the next node will come from cross_val_predict with the specified number of folds.

0
method str

The prediction method to use for the inner classifiers or regressors. If 'auto', it will try to use predict_proba, decision_function, or predict in that order.

'auto'
memory

Used to cache the input and outputs of nodes to prevent refitting or computationally heavy transformations. By default, no caching is performed. If a string is given, it is the path to the caching directory.

required
use_label_encoder bool

If True, the label encoder is used to encode the labels to be 0 to N. If False, the label encoder is not used. Mainly useful for classifiers (XGBoost) that require labels to be ints from 0 to N. Can also be a sklearn.preprocessing.LabelEncoder object. If so, that label encoder is used.

False
Source code in tpot2/search_spaces/pipelines/graph.py
def __init__(self, 
    root_search_space: SearchSpace, 
    leaf_search_space: SearchSpace = None, 
    inner_search_space: SearchSpace = None, 
    max_size: int = np.inf,
    crossover_same_depth: bool = False,
    cross_val_predict_cv: Union[int, Callable] = 0, #signature function(estimator, X, y=none)
    method: str = 'auto',
    use_label_encoder: bool = False):

    """
    Defines a search space of pipelines in the shape of a Directed Acyclic Graphs. The search spaces for root, leaf, and inner nodes can be defined separately if desired.
    Each graph will have a single root serving as the final estimator which is drawn from the `root_search_space`. If the `leaf_search_space` is defined, all leaves 
    in the pipeline will be drawn from that search space. If the `leaf_search_space` is not defined, all leaves will be drawn from the `inner_search_space`.
    Nodes that are not leaves or roots will be drawn from the `inner_search_space`. If the `inner_search_space` is not defined, there will be no inner nodes.

    `cross_val_predict_cv`, `method`, `memory`, and `use_label_encoder` are passed to the GraphPipeline object when the pipeline is exported and not directly used in the search space.

    Exports to a GraphPipeline object.

    Parameters
    ----------

    root_search_space: SearchSpace
        The search space for the root node of the graph. This node will be the final estimator in the pipeline.

    inner_search_space: SearchSpace, optional
        The search space for the inner nodes of the graph. If not defined, there will be no inner nodes.

    leaf_search_space: SearchSpace, optional
        The search space for the leaf nodes of the graph. If not defined, the leaf nodes will be drawn from the inner_search_space.

    crossover_same_depth: bool, optional
        If True, crossover will only occur between nodes at the same depth in the graph. If False, crossover will occur between nodes at any depth.

    cross_val_predict_cv : int, default=0
        Number of folds to use for the cross_val_predict function for inner classifiers and regressors. Estimators will still be fit on the full dataset, but the following node will get the outputs from cross_val_predict.

        - 0-1 : When set to 0 or 1, the cross_val_predict function will not be used. The next layer will get the outputs from fitting and transforming the full dataset.
        - >=2 : When fitting pipelines with inner classifiers or regressors, they will still be fit on the full dataset.
                However, the output to the next node will come from cross_val_predict with the specified number of folds.

    method: str, optional
        The prediction method to use for the inner classifiers or regressors. If 'auto', it will try to use predict_proba, decision_function, or predict in that order.

    memory: str or object with the joblib.Memory interface, optional
        Used to cache the input and outputs of nodes to prevent refitting or computationally heavy transformations. By default, no caching is performed. If a string is given, it is the path to the caching directory.

    use_label_encoder: bool, optional
        If True, the label encoder is used to encode the labels to be 0 to N. If False, the label encoder is not used.
        Mainly useful for classifiers (XGBoost) that require labels to be ints from 0 to N.
        Can also be a sklearn.preprocessing.LabelEncoder object. If so, that label encoder is used.

    """


    self.root_search_space = root_search_space
    self.leaf_search_space = leaf_search_space
    self.inner_search_space = inner_search_space
    self.max_size = max_size
    self.crossover_same_depth = crossover_same_depth

    self.cross_val_predict_cv = cross_val_predict_cv
    self.method = method
    self.use_label_encoder = use_label_encoder