Overview

Dataset statistics

Number of variables17
Number of observations435
Missing cells0
Missing cells (%)0.0%
Duplicate rows93
Duplicate rows (%)21.4%
Total size in memory57.9 KiB
Average record size in memory136.3 B

Variable types

CAT16
BOOL1

Reproduction

Analysis started2020-08-25 02:02:23.832519
Analysis finished2020-08-25 02:02:26.345783
Duration2.51 seconds
Versionpandas-profiling v2.8.0
Command linepandas_profiling --config_file config.yaml [YOUR_FILE.csv]
Download configurationconfig.yaml

Warnings

Dataset has 93 (21.4%) duplicate rows Duplicates
target is highly correlated with physician fee freezeHigh correlation
physician fee freeze is highly correlated with targetHigh correlation

Variables

Distinct count3
Unique (%)0.7%
Missing0
Missing (%)0.0%
Memory size3.5 KiB
0
236
2
187
1
 
12
ValueCountFrequency (%) 
023654.3%
 
218743.0%
 
1122.8%
 
2020-08-25T02:02:26.411427image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Length

Max length1
Median length1
Mean length1
Min length1

Overview of Unicode Properties

Unique unicode characters3
Unique unicode categories (?)1
Unique unicode scripts (?)1
Unique unicode blocks (?)1
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Most occurring characters

ValueCountFrequency (%) 
023654.3%
 
218743.0%
 
1122.8%
 

Most occurring categories

ValueCountFrequency (%) 
Decimal Number435100.0%
 

Most frequent Decimal Number characters

ValueCountFrequency (%) 
023654.3%
 
218743.0%
 
1122.8%
 

Most occurring scripts

ValueCountFrequency (%) 
Common435100.0%
 

Most frequent Common characters

ValueCountFrequency (%) 
023654.3%
 
218743.0%
 
1122.8%
 

Most occurring blocks

ValueCountFrequency (%) 
ASCII435100.0%
 

Most frequent ASCII characters

ValueCountFrequency (%) 
023654.3%
 
218743.0%
 
1122.8%
 
Distinct count3
Unique (%)0.7%
Missing0
Missing (%)0.0%
Memory size3.5 KiB
2
195
0
192
1
48
ValueCountFrequency (%) 
219544.8%
 
019244.1%
 
14811.0%
 
2020-08-25T02:02:26.536467image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Length

Max length1
Median length1
Mean length1
Min length1

Overview of Unicode Properties

Unique unicode characters3
Unique unicode categories (?)1
Unique unicode scripts (?)1
Unique unicode blocks (?)1
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Most occurring characters

ValueCountFrequency (%) 
219544.8%
 
019244.1%
 
14811.0%
 

Most occurring categories

ValueCountFrequency (%) 
Decimal Number435100.0%
 

Most frequent Decimal Number characters

ValueCountFrequency (%) 
219544.8%
 
019244.1%
 
14811.0%
 

Most occurring scripts

ValueCountFrequency (%) 
Common435100.0%
 

Most frequent Common characters

ValueCountFrequency (%) 
219544.8%
 
019244.1%
 
14811.0%
 

Most occurring blocks

ValueCountFrequency (%) 
ASCII435100.0%
 

Most frequent ASCII characters

ValueCountFrequency (%) 
219544.8%
 
019244.1%
 
14811.0%
 
Distinct count3
Unique (%)0.7%
Missing0
Missing (%)0.0%
Memory size3.5 KiB
2
253
0
171
1
 
11
ValueCountFrequency (%) 
225358.2%
 
017139.3%
 
1112.5%
 
2020-08-25T02:02:26.660350image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Length

Max length1
Median length1
Mean length1
Min length1

Overview of Unicode Properties

Unique unicode characters3
Unique unicode categories (?)1
Unique unicode scripts (?)1
Unique unicode blocks (?)1
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Most occurring characters

ValueCountFrequency (%) 
225358.2%
 
017139.3%
 
1112.5%
 

Most occurring categories

ValueCountFrequency (%) 
Decimal Number435100.0%
 

Most frequent Decimal Number characters

ValueCountFrequency (%) 
225358.2%
 
017139.3%
 
1112.5%
 

Most occurring scripts

ValueCountFrequency (%) 
Common435100.0%
 

Most frequent Common characters

ValueCountFrequency (%) 
225358.2%
 
017139.3%
 
1112.5%
 

Most occurring blocks

ValueCountFrequency (%) 
ASCII435100.0%
 

Most frequent ASCII characters

ValueCountFrequency (%) 
225358.2%
 
017139.3%
 
1112.5%
 

physician fee freeze
Categorical

HIGH CORRELATION

Distinct count3
Unique (%)0.7%
Missing0
Missing (%)0.0%
Memory size3.5 KiB
0
247
2
177
1
 
11
ValueCountFrequency (%) 
024756.8%
 
217740.7%
 
1112.5%
 
2020-08-25T02:02:26.783711image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Length

Max length1
Median length1
Mean length1
Min length1

Overview of Unicode Properties

Unique unicode characters3
Unique unicode categories (?)1
Unique unicode scripts (?)1
Unique unicode blocks (?)1
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Most occurring characters

ValueCountFrequency (%) 
024756.8%
 
217740.7%
 
1112.5%
 

Most occurring categories

ValueCountFrequency (%) 
Decimal Number435100.0%
 

Most frequent Decimal Number characters

ValueCountFrequency (%) 
024756.8%
 
217740.7%
 
1112.5%
 

Most occurring scripts

ValueCountFrequency (%) 
Common435100.0%
 

Most frequent Common characters

ValueCountFrequency (%) 
024756.8%
 
217740.7%
 
1112.5%
 

Most occurring blocks

ValueCountFrequency (%) 
ASCII435100.0%
 

Most frequent ASCII characters

ValueCountFrequency (%) 
024756.8%
 
217740.7%
 
1112.5%
 

el salvador aid
Categorical

Distinct count3
Unique (%)0.7%
Missing0
Missing (%)0.0%
Memory size3.5 KiB
2
212
0
208
1
 
15
ValueCountFrequency (%) 
221248.7%
 
020847.8%
 
1153.4%
 
2020-08-25T02:02:26.908081image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Length

Max length1
Median length1
Mean length1
Min length1

Overview of Unicode Properties

Unique unicode characters3
Unique unicode categories (?)1
Unique unicode scripts (?)1
Unique unicode blocks (?)1
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Most occurring characters

ValueCountFrequency (%) 
221248.7%
 
020847.8%
 
1153.4%
 

Most occurring categories

ValueCountFrequency (%) 
Decimal Number435100.0%
 

Most frequent Decimal Number characters

ValueCountFrequency (%) 
221248.7%
 
020847.8%
 
1153.4%
 

Most occurring scripts

ValueCountFrequency (%) 
Common435100.0%
 

Most frequent Common characters

ValueCountFrequency (%) 
221248.7%
 
020847.8%
 
1153.4%
 

Most occurring blocks

ValueCountFrequency (%) 
ASCII435100.0%
 

Most frequent ASCII characters

ValueCountFrequency (%) 
221248.7%
 
020847.8%
 
1153.4%
 
Distinct count3
Unique (%)0.7%
Missing0
Missing (%)0.0%
Memory size3.5 KiB
2
272
0
152
1
 
11
ValueCountFrequency (%) 
227262.5%
 
015234.9%
 
1112.5%
 
2020-08-25T02:02:27.032277image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Length

Max length1
Median length1
Mean length1
Min length1

Overview of Unicode Properties

Unique unicode characters3
Unique unicode categories (?)1
Unique unicode scripts (?)1
Unique unicode blocks (?)1
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Most occurring characters

ValueCountFrequency (%) 
227262.5%
 
015234.9%
 
1112.5%
 

Most occurring categories

ValueCountFrequency (%) 
Decimal Number435100.0%
 

Most frequent Decimal Number characters

ValueCountFrequency (%) 
227262.5%
 
015234.9%
 
1112.5%
 

Most occurring scripts

ValueCountFrequency (%) 
Common435100.0%
 

Most frequent Common characters

ValueCountFrequency (%) 
227262.5%
 
015234.9%
 
1112.5%
 

Most occurring blocks

ValueCountFrequency (%) 
ASCII435100.0%
 

Most frequent ASCII characters

ValueCountFrequency (%) 
227262.5%
 
015234.9%
 
1112.5%
 
Distinct count3
Unique (%)0.7%
Missing0
Missing (%)0.0%
Memory size3.5 KiB
2
239
0
182
1
 
14
ValueCountFrequency (%) 
223954.9%
 
018241.8%
 
1143.2%
 
2020-08-25T02:02:27.160684image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Length

Max length1
Median length1
Mean length1
Min length1

Overview of Unicode Properties

Unique unicode characters3
Unique unicode categories (?)1
Unique unicode scripts (?)1
Unique unicode blocks (?)1
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Most occurring characters

ValueCountFrequency (%) 
223954.9%
 
018241.8%
 
1143.2%
 

Most occurring categories

ValueCountFrequency (%) 
Decimal Number435100.0%
 

Most frequent Decimal Number characters

ValueCountFrequency (%) 
223954.9%
 
018241.8%
 
1143.2%
 

Most occurring scripts

ValueCountFrequency (%) 
Common435100.0%
 

Most frequent Common characters

ValueCountFrequency (%) 
223954.9%
 
018241.8%
 
1143.2%
 

Most occurring blocks

ValueCountFrequency (%) 
ASCII435100.0%
 

Most frequent ASCII characters

ValueCountFrequency (%) 
223954.9%
 
018241.8%
 
1143.2%
 
Distinct count3
Unique (%)0.7%
Missing0
Missing (%)0.0%
Memory size3.5 KiB
2
242
0
178
1
 
15
ValueCountFrequency (%) 
224255.6%
 
017840.9%
 
1153.4%
 
2020-08-25T02:02:27.297801image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Length

Max length1
Median length1
Mean length1
Min length1

Overview of Unicode Properties

Unique unicode characters3
Unique unicode categories (?)1
Unique unicode scripts (?)1
Unique unicode blocks (?)1
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Most occurring characters

ValueCountFrequency (%) 
224255.6%
 
017840.9%
 
1153.4%
 

Most occurring categories

ValueCountFrequency (%) 
Decimal Number435100.0%
 

Most frequent Decimal Number characters

ValueCountFrequency (%) 
224255.6%
 
017840.9%
 
1153.4%
 

Most occurring scripts

ValueCountFrequency (%) 
Common435100.0%
 

Most frequent Common characters

ValueCountFrequency (%) 
224255.6%
 
017840.9%
 
1153.4%
 

Most occurring blocks

ValueCountFrequency (%) 
ASCII435100.0%
 

Most frequent ASCII characters

ValueCountFrequency (%) 
224255.6%
 
017840.9%
 
1153.4%
 

mx missile
Categorical

Distinct count3
Unique (%)0.7%
Missing0
Missing (%)0.0%
Memory size3.5 KiB
2
207
0
206
1
 
22
ValueCountFrequency (%) 
220747.6%
 
020647.4%
 
1225.1%
 
2020-08-25T02:02:27.420682image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Length

Max length1
Median length1
Mean length1
Min length1

Overview of Unicode Properties

Unique unicode characters3
Unique unicode categories (?)1
Unique unicode scripts (?)1
Unique unicode blocks (?)1
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Most occurring characters

ValueCountFrequency (%) 
220747.6%
 
020647.4%
 
1225.1%
 

Most occurring categories

ValueCountFrequency (%) 
Decimal Number435100.0%
 

Most frequent Decimal Number characters

ValueCountFrequency (%) 
220747.6%
 
020647.4%
 
1225.1%
 

Most occurring scripts

ValueCountFrequency (%) 
Common435100.0%
 

Most frequent Common characters

ValueCountFrequency (%) 
220747.6%
 
020647.4%
 
1225.1%
 

Most occurring blocks

ValueCountFrequency (%) 
ASCII435100.0%
 

Most frequent ASCII characters

ValueCountFrequency (%) 
220747.6%
 
020647.4%
 
1225.1%
 

immigration
Categorical

Distinct count3
Unique (%)0.7%
Missing0
Missing (%)0.0%
Memory size3.5 KiB
2
216
0
212
1
 
7
ValueCountFrequency (%) 
221649.7%
 
021248.7%
 
171.6%
 
2020-08-25T02:02:27.555196image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Length

Max length1
Median length1
Mean length1
Min length1

Overview of Unicode Properties

Unique unicode characters3
Unique unicode categories (?)1
Unique unicode scripts (?)1
Unique unicode blocks (?)1
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Most occurring characters

ValueCountFrequency (%) 
221649.7%
 
021248.7%
 
171.6%
 

Most occurring categories

ValueCountFrequency (%) 
Decimal Number435100.0%
 

Most frequent Decimal Number characters

ValueCountFrequency (%) 
221649.7%
 
021248.7%
 
171.6%
 

Most occurring scripts

ValueCountFrequency (%) 
Common435100.0%
 

Most frequent Common characters

ValueCountFrequency (%) 
221649.7%
 
021248.7%
 
171.6%
 

Most occurring blocks

ValueCountFrequency (%) 
ASCII435100.0%
 

Most frequent ASCII characters

ValueCountFrequency (%) 
221649.7%
 
021248.7%
 
171.6%
 
Distinct count3
Unique (%)0.7%
Missing0
Missing (%)0.0%
Memory size3.5 KiB
0
264
2
150
1
 
21
ValueCountFrequency (%) 
026460.7%
 
215034.5%
 
1214.8%
 
2020-08-25T02:02:27.678485image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Length

Max length1
Median length1
Mean length1
Min length1

Overview of Unicode Properties

Unique unicode characters3
Unique unicode categories (?)1
Unique unicode scripts (?)1
Unique unicode blocks (?)1
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Most occurring characters

ValueCountFrequency (%) 
026460.7%
 
215034.5%
 
1214.8%
 

Most occurring categories

ValueCountFrequency (%) 
Decimal Number435100.0%
 

Most frequent Decimal Number characters

ValueCountFrequency (%) 
026460.7%
 
215034.5%
 
1214.8%
 

Most occurring scripts

ValueCountFrequency (%) 
Common435100.0%
 

Most frequent Common characters

ValueCountFrequency (%) 
026460.7%
 
215034.5%
 
1214.8%
 

Most occurring blocks

ValueCountFrequency (%) 
ASCII435100.0%
 

Most frequent ASCII characters

ValueCountFrequency (%) 
026460.7%
 
215034.5%
 
1214.8%
 
Distinct count3
Unique (%)0.7%
Missing0
Missing (%)0.0%
Memory size3.5 KiB
0
233
2
171
1
 
31
ValueCountFrequency (%) 
023353.6%
 
217139.3%
 
1317.1%
 
2020-08-25T02:02:27.809542image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Length

Max length1
Median length1
Mean length1
Min length1

Overview of Unicode Properties

Unique unicode characters3
Unique unicode categories (?)1
Unique unicode scripts (?)1
Unique unicode blocks (?)1
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Most occurring characters

ValueCountFrequency (%) 
023353.6%
 
217139.3%
 
1317.1%
 

Most occurring categories

ValueCountFrequency (%) 
Decimal Number435100.0%
 

Most frequent Decimal Number characters

ValueCountFrequency (%) 
023353.6%
 
217139.3%
 
1317.1%
 

Most occurring scripts

ValueCountFrequency (%) 
Common435100.0%
 

Most frequent Common characters

ValueCountFrequency (%) 
023353.6%
 
217139.3%
 
1317.1%
 

Most occurring blocks

ValueCountFrequency (%) 
ASCII435100.0%
 

Most frequent ASCII characters

ValueCountFrequency (%) 
023353.6%
 
217139.3%
 
1317.1%
 
Distinct count3
Unique (%)0.7%
Missing0
Missing (%)0.0%
Memory size3.5 KiB
2
209
0
201
1
 
25
ValueCountFrequency (%) 
220948.0%
 
020146.2%
 
1255.7%
 
2020-08-25T02:02:27.932980image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Length

Max length1
Median length1
Mean length1
Min length1

Overview of Unicode Properties

Unique unicode characters3
Unique unicode categories (?)1
Unique unicode scripts (?)1
Unique unicode blocks (?)1
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Most occurring characters

ValueCountFrequency (%) 
220948.0%
 
020146.2%
 
1255.7%
 

Most occurring categories

ValueCountFrequency (%) 
Decimal Number435100.0%
 

Most frequent Decimal Number characters

ValueCountFrequency (%) 
220948.0%
 
020146.2%
 
1255.7%
 

Most occurring scripts

ValueCountFrequency (%) 
Common435100.0%
 

Most frequent Common characters

ValueCountFrequency (%) 
220948.0%
 
020146.2%
 
1255.7%
 

Most occurring blocks

ValueCountFrequency (%) 
ASCII435100.0%
 

Most frequent ASCII characters

ValueCountFrequency (%) 
220948.0%
 
020146.2%
 
1255.7%
 

crime
Categorical

Distinct count3
Unique (%)0.7%
Missing0
Missing (%)0.0%
Memory size3.5 KiB
2
248
0
170
1
 
17
ValueCountFrequency (%) 
224857.0%
 
017039.1%
 
1173.9%
 
2020-08-25T02:02:28.058147image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Length

Max length1
Median length1
Mean length1
Min length1

Overview of Unicode Properties

Unique unicode characters3
Unique unicode categories (?)1
Unique unicode scripts (?)1
Unique unicode blocks (?)1
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Most occurring characters

ValueCountFrequency (%) 
224857.0%
 
017039.1%
 
1173.9%
 

Most occurring categories

ValueCountFrequency (%) 
Decimal Number435100.0%
 

Most frequent Decimal Number characters

ValueCountFrequency (%) 
224857.0%
 
017039.1%
 
1173.9%
 

Most occurring scripts

ValueCountFrequency (%) 
Common435100.0%
 

Most frequent Common characters

ValueCountFrequency (%) 
224857.0%
 
017039.1%
 
1173.9%
 

Most occurring blocks

ValueCountFrequency (%) 
ASCII435100.0%
 

Most frequent ASCII characters

ValueCountFrequency (%) 
224857.0%
 
017039.1%
 
1173.9%
 
Distinct count3
Unique (%)0.7%
Missing0
Missing (%)0.0%
Memory size3.5 KiB
0
233
2
174
1
 
28
ValueCountFrequency (%) 
023353.6%
 
217440.0%
 
1286.4%
 
2020-08-25T02:02:28.179603image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Length

Max length1
Median length1
Mean length1
Min length1

Overview of Unicode Properties

Unique unicode characters3
Unique unicode categories (?)1
Unique unicode scripts (?)1
Unique unicode blocks (?)1
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Most occurring characters

ValueCountFrequency (%) 
023353.6%
 
217440.0%
 
1286.4%
 

Most occurring categories

ValueCountFrequency (%) 
Decimal Number435100.0%
 

Most frequent Decimal Number characters

ValueCountFrequency (%) 
023353.6%
 
217440.0%
 
1286.4%
 

Most occurring scripts

ValueCountFrequency (%) 
Common435100.0%
 

Most frequent Common characters

ValueCountFrequency (%) 
023353.6%
 
217440.0%
 
1286.4%
 

Most occurring blocks

ValueCountFrequency (%) 
ASCII435100.0%
 

Most frequent ASCII characters

ValueCountFrequency (%) 
023353.6%
 
217440.0%
 
1286.4%
 
Distinct count3
Unique (%)0.7%
Missing0
Missing (%)0.0%
Memory size3.5 KiB
2
269
1
104
0
62
ValueCountFrequency (%) 
226961.8%
 
110423.9%
 
06214.3%
 
2020-08-25T02:02:28.305482image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Length

Max length1
Median length1
Mean length1
Min length1

Overview of Unicode Properties

Unique unicode characters3
Unique unicode categories (?)1
Unique unicode scripts (?)1
Unique unicode blocks (?)1
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Most occurring characters

ValueCountFrequency (%) 
226961.8%
 
110423.9%
 
06214.3%
 

Most occurring categories

ValueCountFrequency (%) 
Decimal Number435100.0%
 

Most frequent Decimal Number characters

ValueCountFrequency (%) 
226961.8%
 
110423.9%
 
06214.3%
 

Most occurring scripts

ValueCountFrequency (%) 
Common435100.0%
 

Most frequent Common characters

ValueCountFrequency (%) 
226961.8%
 
110423.9%
 
06214.3%
 

Most occurring blocks

ValueCountFrequency (%) 
ASCII435100.0%
 

Most frequent ASCII characters

ValueCountFrequency (%) 
226961.8%
 
110423.9%
 
06214.3%
 

target
Boolean

HIGH CORRELATION

Distinct count2
Unique (%)0.5%
Missing0
Missing (%)0.0%
Memory size3.5 KiB
0
267
1
168
ValueCountFrequency (%) 
026761.4%
 
116838.6%
 

Correlations

2020-08-25T02:02:28.437857image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Pearson's r

The Pearson's correlation coefficient (r) is a measure of linear correlation between two variables. It's value lies between -1 and +1, -1 indicating total negative linear correlation, 0 indicating no linear correlation and 1 indicating total positive linear correlation. Furthermore, r is invariant under separate changes in location and scale of the two variables, implying that for a linear function the angle to the x-axis does not affect r.

To calculate r for two variables X and Y, one divides the covariance of X and Y by the product of their standard deviations.
2020-08-25T02:02:28.771080image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Spearman's ρ

The Spearman's rank correlation coefficient (ρ) is a measure of monotonic correlation between two variables, and is therefore better in catching nonlinear monotonic correlations than Pearson's r. It's value lies between -1 and +1, -1 indicating total negative monotonic correlation, 0 indicating no monotonic correlation and 1 indicating total positive monotonic correlation.

To calculate ρ for two variables X and Y, one divides the covariance of the rank variables of X and Y by the product of their standard deviations.
2020-08-25T02:02:29.109038image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Kendall's τ

Similarly to Spearman's rank correlation coefficient, the Kendall rank correlation coefficient (τ) measures ordinal association between two variables. It's value lies between -1 and +1, -1 indicating total negative correlation, 0 indicating no correlation and 1 indicating total positive correlation.

To calculate τ for two variables X and Y, one determines the number of concordant and discordant pairs of observations. τ is given by the number of concordant pairs minus the discordant pairs divided by the total number of pairs.
2020-08-25T02:02:29.644386image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Phik (φk)

Phik (φk) is a new and practical correlation coefficient that works consistently between categorical, ordinal and interval variables, captures non-linear dependency and reverts to the Pearson correlation coefficient in case of a bivariate normal input distribution. There is extensive documentation available here.
2020-08-25T02:02:29.967922image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Cramér's V (φc)

Cramér's V is an association measure for nominal random variables. The coefficient ranges from 0 to 1, with 0 indicating independence and 1 indicating perfect association. The empirical estimators used for Cramér's V have been proved to be biased, even for large samples. We use a bias-corrected measure that has been proposed by Bergsma in 2013 that can be found here.

Missing values

2020-08-25T02:02:25.758430image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T02:02:26.157112image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Sample

First rows

handicapped infantswater project cost sharingadoption of the budget resolutionphysician fee freezeel salvador aidreligious groups in schoolsanti satellite test banaid to nicaraguan contrasmx missileimmigrationsynfuels corporation cutbackeducation spendingsuperfund right to suecrimeduty free exportsexport administration act south africatarget
000222200220222021
120222222020202221
202202120022020220
320202200000000020
402022200002222001
522202202002020220
602200022222000220
700002220000222020
822200022222000020
902200222022022010

Last rows

handicapped infantswater project cost sharingadoption of the budget resolutionphysician fee freezeel salvador aidreligious groups in schoolsanti satellite test banaid to nicaraguan contrasmx missileimmigrationsynfuels corporation cutbackeducation spendingsuperfund right to suecrimeduty free exportsexport administration act south africatarget
42500022200020202021
42622202222222022010
42722200222222222010
42800022200020222021
42912212200002022000
43002022200000222001
43100200022200000220
43202002200022022000
43300022220020002221
43422000022102000210

Duplicate rows

Most frequent

handicapped infantswater project cost sharingadoption of the budget resolutionphysician fee freezeel salvador aidreligious groups in schoolsanti satellite test banaid to nicaraguan contrasmx missileimmigrationsynfuels corporation cutbackeducation spendingsuperfund right to suecrimeduty free exportsexport administration act south africatargetcount
0000222000002220018
14020222000002220218
13020222000002220016
21202000222000002106
2000222000002220215
4000222000202220015
15020222000202220015
26202000222200002205
29212000222000002105
34222000222000002205