Overview

Dataset statistics

Number of variables7
Number of observations554
Missing cells0
Missing cells (%)0.0%
Duplicate rows116
Duplicate rows (%)20.9%
Total size in memory30.4 KiB
Average record size in memory56.2 B

Variable types

CAT4
BOOL3

Reproduction

Analysis started2020-08-25 01:40:00.869449
Analysis finished2020-08-25 01:40:01.566296
Duration0.7 seconds
Versionpandas-profiling v2.8.0
Command linepandas_profiling --config_file config.yaml [YOUR_FILE.csv]
Download configurationconfig.yaml

Warnings

Dataset has 116 (20.9%) duplicate rows Duplicates

Variables

Head shape
Categorical

Distinct count3
Unique (%)0.5%
Missing0
Missing (%)0.0%
Memory size4.5 KiB
1
192
2
184
0
178
ValueCountFrequency (%) 
119234.7%
 
218433.2%
 
017832.1%
 
2020-08-25T01:40:01.634252image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Length

Max length1
Median length1
Mean length1
Min length1

Overview of Unicode Properties

Unique unicode characters3
Unique unicode categories (?)1
Unique unicode scripts (?)1
Unique unicode blocks (?)1
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Most occurring characters

ValueCountFrequency (%) 
119234.7%
 
218433.2%
 
017832.1%
 

Most occurring categories

ValueCountFrequency (%) 
Decimal Number554100.0%
 

Most frequent Decimal Number characters

ValueCountFrequency (%) 
119234.7%
 
218433.2%
 
017832.1%
 

Most occurring scripts

ValueCountFrequency (%) 
Common554100.0%
 

Most frequent Common characters

ValueCountFrequency (%) 
119234.7%
 
218433.2%
 
017832.1%
 

Most occurring blocks

ValueCountFrequency (%) 
ASCII554100.0%
 

Most frequent ASCII characters

ValueCountFrequency (%) 
119234.7%
 
218433.2%
 
017832.1%
 

Body shape
Categorical

Distinct count3
Unique (%)0.5%
Missing0
Missing (%)0.0%
Memory size4.5 KiB
2
186
0
185
1
183
ValueCountFrequency (%) 
218633.6%
 
018533.4%
 
118333.0%
 
2020-08-25T01:40:01.764277image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Length

Max length1
Median length1
Mean length1
Min length1

Overview of Unicode Properties

Unique unicode characters3
Unique unicode categories (?)1
Unique unicode scripts (?)1
Unique unicode blocks (?)1
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Most occurring characters

ValueCountFrequency (%) 
218633.6%
 
018533.4%
 
118333.0%
 

Most occurring categories

ValueCountFrequency (%) 
Decimal Number554100.0%
 

Most frequent Decimal Number characters

ValueCountFrequency (%) 
218633.6%
 
018533.4%
 
118333.0%
 

Most occurring scripts

ValueCountFrequency (%) 
Common554100.0%
 

Most frequent Common characters

ValueCountFrequency (%) 
218633.6%
 
018533.4%
 
118333.0%
 

Most occurring blocks

ValueCountFrequency (%) 
ASCII554100.0%
 

Most frequent ASCII characters

ValueCountFrequency (%) 
218633.6%
 
018533.4%
 
118333.0%
 

Is smiling
Boolean

Distinct count2
Unique (%)0.4%
Missing0
Missing (%)0.0%
Memory size4.5 KiB
1
281
0
273
ValueCountFrequency (%) 
128150.7%
 
027349.3%
 

Holding
Categorical

Distinct count3
Unique (%)0.5%
Missing0
Missing (%)0.0%
Memory size4.5 KiB
1
188
2
184
0
182
ValueCountFrequency (%) 
118833.9%
 
218433.2%
 
018232.9%
 
2020-08-25T01:40:01.893454image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Length

Max length1
Median length1
Mean length1
Min length1

Overview of Unicode Properties

Unique unicode characters3
Unique unicode categories (?)1
Unique unicode scripts (?)1
Unique unicode blocks (?)1
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Most occurring characters

ValueCountFrequency (%) 
118833.9%
 
218433.2%
 
018232.9%
 

Most occurring categories

ValueCountFrequency (%) 
Decimal Number554100.0%
 

Most frequent Decimal Number characters

ValueCountFrequency (%) 
118833.9%
 
218433.2%
 
018232.9%
 

Most occurring scripts

ValueCountFrequency (%) 
Common554100.0%
 

Most frequent Common characters

ValueCountFrequency (%) 
118833.9%
 
218433.2%
 
018232.9%
 

Most occurring blocks

ValueCountFrequency (%) 
ASCII554100.0%
 

Most frequent ASCII characters

ValueCountFrequency (%) 
118833.9%
 
218433.2%
 
018232.9%
 

Jacket color
Categorical

Distinct count4
Unique (%)0.7%
Missing0
Missing (%)0.0%
Memory size4.5 KiB
2
140
3
139
0
139
1
136
ValueCountFrequency (%) 
214025.3%
 
313925.1%
 
013925.1%
 
113624.5%
 
2020-08-25T01:40:02.028712image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Length

Max length1
Median length1
Mean length1
Min length1

Overview of Unicode Properties

Unique unicode characters4
Unique unicode categories (?)1
Unique unicode scripts (?)1
Unique unicode blocks (?)1
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Most occurring characters

ValueCountFrequency (%) 
214025.3%
 
313925.1%
 
013925.1%
 
113624.5%
 

Most occurring categories

ValueCountFrequency (%) 
Decimal Number554100.0%
 

Most frequent Decimal Number characters

ValueCountFrequency (%) 
214025.3%
 
313925.1%
 
013925.1%
 
113624.5%
 

Most occurring scripts

ValueCountFrequency (%) 
Common554100.0%
 

Most frequent Common characters

ValueCountFrequency (%) 
214025.3%
 
313925.1%
 
013925.1%
 
113624.5%
 

Most occurring blocks

ValueCountFrequency (%) 
ASCII554100.0%
 

Most frequent ASCII characters

ValueCountFrequency (%) 
214025.3%
 
313925.1%
 
013925.1%
 
113624.5%
 

Has tie
Boolean

Distinct count2
Unique (%)0.4%
Missing0
Missing (%)0.0%
Memory size4.5 KiB
0
279
1
275
ValueCountFrequency (%) 
027950.4%
 
127549.6%
 

target
Boolean

Distinct count2
Unique (%)0.4%
Missing0
Missing (%)0.0%
Memory size4.5 KiB
1
288
0
266
ValueCountFrequency (%) 
128852.0%
 
026648.0%
 

Correlations

2020-08-25T01:40:02.142992image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Pearson's r

The Pearson's correlation coefficient (r) is a measure of linear correlation between two variables. It's value lies between -1 and +1, -1 indicating total negative linear correlation, 0 indicating no linear correlation and 1 indicating total positive linear correlation. Furthermore, r is invariant under separate changes in location and scale of the two variables, implying that for a linear function the angle to the x-axis does not affect r.

To calculate r for two variables X and Y, one divides the covariance of X and Y by the product of their standard deviations.
2020-08-25T01:40:02.535233image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Spearman's ρ

The Spearman's rank correlation coefficient (ρ) is a measure of monotonic correlation between two variables, and is therefore better in catching nonlinear monotonic correlations than Pearson's r. It's value lies between -1 and +1, -1 indicating total negative monotonic correlation, 0 indicating no monotonic correlation and 1 indicating total positive monotonic correlation.

To calculate ρ for two variables X and Y, one divides the covariance of the rank variables of X and Y by the product of their standard deviations.
2020-08-25T01:40:02.730648image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Kendall's τ

Similarly to Spearman's rank correlation coefficient, the Kendall rank correlation coefficient (τ) measures ordinal association between two variables. It's value lies between -1 and +1, -1 indicating total negative correlation, 0 indicating no correlation and 1 indicating total positive correlation.

To calculate τ for two variables X and Y, one determines the number of concordant and discordant pairs of observations. τ is given by the number of concordant pairs minus the discordant pairs divided by the total number of pairs.
2020-08-25T01:40:02.923445image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Phik (φk)

Phik (φk) is a new and practical correlation coefficient that works consistently between categorical, ordinal and interval variables, captures non-linear dependency and reverts to the Pearson correlation coefficient in case of a bivariate normal input distribution. There is extensive documentation available here.
2020-08-25T01:40:03.098717image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Cramér's V (φc)

Cramér's V is an association measure for nominal random variables. The coefficient ranges from 0 to 1, with 0 indicating independence and 1 indicating perfect association. The empirical estimators used for Cramér's V have been proved to be biased, even for large samples. We use a bias-corrected measure that has been proposed by Bergsma in 2013 that can be found here.

Missing values

2020-08-25T01:40:01.252678image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:40:01.462637image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Sample

First rows

Head shapeBody shapeIs smilingHoldingJacket colorHas tietarget
01112201
11112311
21112301
31112110
41112010
51110211
61110301
71110000
81102301
91102000

Last rows

Head shapeBody shapeIs smilingHoldingJacket colorHas tietarget
5440000010
5450000000
5460001210
5470001200
5480001310
5490001300
5500001110
5510001100
5520001010
5530001000

Duplicate rows

Most frequent

Head shapeBody shapeIs smilingHoldingJacket colorHas tietargetcount
000001002
100003002
200010002
300011002
400012102
500022002
600022102
700100002
800110102
900112102