Overview

Dataset statistics

Number of variables14
Number of observations270
Missing cells0
Missing cells (%)0.0%
Duplicate rows0
Duplicate rows (%)0.0%
Total size in memory29.7 KiB
Average record size in memory112.5 B

Variable types

CAT5
NUM5
BOOL4

Reproduction

Analysis started2020-08-25 01:24:36.260619
Analysis finished2020-08-25 01:24:40.717365
Duration4.46 seconds
Versionpandas-profiling v2.8.0
Command linepandas_profiling --config_file config.yaml [YOUR_FILE.csv]
Download configurationconfig.yaml

Warnings

oldpeak has 85 (31.5%) zeros Zeros

Variables

age
Real number (ℝ≥0)

Distinct count41
Unique (%)15.2%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean54.43333333333333
Minimum29.0
Maximum77.0
Zeros0
Zeros (%)0.0%
Memory size2.2 KiB
2020-08-25T01:24:40.760198image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Quantile statistics

Minimum29
5-th percentile40
Q148
median55
Q361
95-th percentile68
Maximum77
Range48
Interquartile range (IQR)13

Descriptive statistics

Standard deviation9.109066524
Coefficient of variation (CV)0.1673435369
Kurtosis-0.544815393
Mean54.43333333
Median Absolute Deviation (MAD)7
Skewness-0.1636152273
Sum14697
Variance82.97509294
2020-08-25T01:24:40.854367image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
Histogram with fixed size bins (bins=10)
ValueCountFrequency (%) 
54165.9%
 
58155.6%
 
51124.4%
 
59124.4%
 
60124.4%
 
57124.4%
 
52114.1%
 
62114.1%
 
44103.7%
 
5693.3%
 
6493.3%
 
4193.3%
 
6583.0%
 
4283.0%
 
6783.0%
 
4872.6%
 
4372.6%
 
5372.6%
 
6172.6%
 
6372.6%
 
5072.6%
 
4672.6%
 
4572.6%
 
6662.2%
 
5562.2%
 
Other values (16)4014.8%
 
ValueCountFrequency (%) 
2910.4%
 
3420.7%
 
3531.1%
 
3720.7%
 
3810.4%
 
3931.1%
 
4031.1%
 
4193.3%
 
4283.0%
 
4372.6%
 
ValueCountFrequency (%) 
7710.4%
 
7610.4%
 
7410.4%
 
7131.1%
 
7041.5%
 
6931.1%
 
6831.1%
 
6783.0%
 
6662.2%
 
6583.0%
 

sex
Boolean

Distinct count2
Unique (%)0.7%
Missing0
Missing (%)0.0%
Memory size2.2 KiB
1
183
0
87
ValueCountFrequency (%) 
118367.8%
 
08732.2%
 

chest
Categorical

Distinct count4
Unique (%)1.5%
Missing0
Missing (%)0.0%
Memory size2.2 KiB
4
129
3
79
2
42
1
 
20
ValueCountFrequency (%) 
412947.8%
 
37929.3%
 
24215.6%
 
1207.4%
 
2020-08-25T01:24:40.979571image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Length

Max length3
Median length3
Mean length3
Min length3

Overview of Unicode Properties

Unique unicode characters6
Unique unicode categories (?)2
Unique unicode scripts (?)1
Unique unicode blocks (?)1
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Most occurring characters

ValueCountFrequency (%) 
.27033.3%
 
027033.3%
 
412915.9%
 
3799.8%
 
2425.2%
 
1202.5%
 

Most occurring categories

ValueCountFrequency (%) 
Decimal Number54066.7%
 
Other Punctuation27033.3%
 

Most frequent Decimal Number characters

ValueCountFrequency (%) 
027050.0%
 
412923.9%
 
37914.6%
 
2427.8%
 
1203.7%
 

Most frequent Other Punctuation characters

ValueCountFrequency (%) 
.270100.0%
 

Most occurring scripts

ValueCountFrequency (%) 
Common810100.0%
 

Most frequent Common characters

ValueCountFrequency (%) 
.27033.3%
 
027033.3%
 
412915.9%
 
3799.8%
 
2425.2%
 
1202.5%
 

Most occurring blocks

ValueCountFrequency (%) 
ASCII810100.0%
 

Most frequent ASCII characters

ValueCountFrequency (%) 
.27033.3%
 
027033.3%
 
412915.9%
 
3799.8%
 
2425.2%
 
1202.5%
 

resting_blood_pressure
Real number (ℝ≥0)

Distinct count47
Unique (%)17.4%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean131.34444444444443
Minimum94.0
Maximum200.0
Zeros0
Zeros (%)0.0%
Memory size2.2 KiB
2020-08-25T01:24:41.087799image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Quantile statistics

Minimum94
5-th percentile106.9
Q1120
median130
Q3140
95-th percentile160
Maximum200
Range106
Interquartile range (IQR)20

Descriptive statistics

Standard deviation17.86160829
Coefficient of variation (CV)0.1359905885
Kurtosis0.9230967359
Mean131.3444444
Median Absolute Deviation (MAD)10
Skewness0.722618007
Sum35463
Variance319.0370508
2020-08-25T01:24:41.192717image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
Histogram with fixed size bins (bins=10)
ValueCountFrequency (%) 
1203412.6%
 
1303111.5%
 
1403011.1%
 
110176.3%
 
150176.3%
 
160114.1%
 
125103.7%
 
12893.3%
 
11293.3%
 
13893.3%
 
11872.6%
 
13562.2%
 
10862.2%
 
13262.2%
 
12451.9%
 
14551.9%
 
10041.5%
 
13441.5%
 
15241.5%
 
13631.1%
 
14231.1%
 
11531.1%
 
12231.1%
 
12631.1%
 
10531.1%
 
Other values (22)2810.4%
 
ValueCountFrequency (%) 
9420.7%
 
10041.5%
 
10110.4%
 
10220.7%
 
10410.4%
 
10531.1%
 
10610.4%
 
10862.2%
 
110176.3%
 
11293.3%
 
ValueCountFrequency (%) 
20010.4%
 
19210.4%
 
18031.1%
 
17820.7%
 
17410.4%
 
17210.4%
 
17020.7%
 
16510.4%
 
160114.1%
 
15810.4%
 

serum_cholestoral
Real number (ℝ≥0)

Distinct count144
Unique (%)53.3%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean249.65925925925927
Minimum126.0
Maximum564.0
Zeros0
Zeros (%)0.0%
Memory size2.2 KiB
2020-08-25T01:24:41.304066image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Quantile statistics

Minimum126
5-th percentile177
Q1213
median245
Q3280
95-th percentile326.55
Maximum564
Range438
Interquartile range (IQR)67

Descriptive statistics

Standard deviation51.68623712
Coefficient of variation (CV)0.2070271188
Kurtosis4.89559899
Mean249.6592593
Median Absolute Deviation (MAD)32.5
Skewness1.183720889
Sum67408
Variance2671.467107
2020-08-25T01:24:41.393787image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
Histogram with fixed size bins (bins=10)
ValueCountFrequency (%) 
23462.2%
 
25451.9%
 
26951.9%
 
23341.5%
 
24341.5%
 
28241.5%
 
22641.5%
 
21141.5%
 
21241.5%
 
19741.5%
 
23941.5%
 
17741.5%
 
20441.5%
 
21931.1%
 
23031.1%
 
19931.1%
 
30331.1%
 
22931.1%
 
24531.1%
 
24031.1%
 
25031.1%
 
20131.1%
 
25831.1%
 
27431.1%
 
30931.1%
 
Other values (119)17865.9%
 
ValueCountFrequency (%) 
12610.4%
 
14110.4%
 
14920.7%
 
16010.4%
 
16410.4%
 
16610.4%
 
16710.4%
 
16810.4%
 
17210.4%
 
17410.4%
 
ValueCountFrequency (%) 
56410.4%
 
41710.4%
 
40910.4%
 
40710.4%
 
39410.4%
 
36010.4%
 
35410.4%
 
35310.4%
 
34110.4%
 
34010.4%
 
Distinct count2
Unique (%)0.7%
Missing0
Missing (%)0.0%
Memory size2.2 KiB
0
230
1
 
40
ValueCountFrequency (%) 
023085.2%
 
14014.8%
 
Distinct count3
Unique (%)1.1%
Missing0
Missing (%)0.0%
Memory size2.2 KiB
2
137
0
131
1
 
2
ValueCountFrequency (%) 
213750.7%
 
013148.5%
 
120.7%
 
2020-08-25T01:24:41.516323image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Length

Max length3
Median length3
Mean length3
Min length3

Overview of Unicode Properties

Unique unicode characters4
Unique unicode categories (?)2
Unique unicode scripts (?)1
Unique unicode blocks (?)1
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Most occurring characters

ValueCountFrequency (%) 
040149.5%
 
.27033.3%
 
213716.9%
 
120.2%
 

Most occurring categories

ValueCountFrequency (%) 
Decimal Number54066.7%
 
Other Punctuation27033.3%
 

Most frequent Decimal Number characters

ValueCountFrequency (%) 
040174.3%
 
213725.4%
 
120.4%
 

Most frequent Other Punctuation characters

ValueCountFrequency (%) 
.270100.0%
 

Most occurring scripts

ValueCountFrequency (%) 
Common810100.0%
 

Most frequent Common characters

ValueCountFrequency (%) 
040149.5%
 
.27033.3%
 
213716.9%
 
120.2%
 

Most occurring blocks

ValueCountFrequency (%) 
ASCII810100.0%
 

Most frequent ASCII characters

ValueCountFrequency (%) 
040149.5%
 
.27033.3%
 
213716.9%
 
120.2%
 

maximum_heart_rate_achieved
Real number (ℝ≥0)

Distinct count90
Unique (%)33.3%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean149.67777777777778
Minimum71.0
Maximum202.0
Zeros0
Zeros (%)0.0%
Memory size2.2 KiB
2020-08-25T01:24:41.625337image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Quantile statistics

Minimum71
5-th percentile108
Q1133
median153.5
Q3166
95-th percentile182
Maximum202
Range131
Interquartile range (IQR)33

Descriptive statistics

Standard deviation23.16571678
Coefficient of variation (CV)0.154770582
Kurtosis-0.1030718853
Mean149.6777778
Median Absolute Deviation (MAD)15.5
Skewness-0.5277366829
Sum40413
Variance536.6504337
2020-08-25T01:24:41.733980image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
Histogram with fixed size bins (bins=10)
ValueCountFrequency (%) 
162103.7%
 
16093.3%
 
16383.0%
 
17272.6%
 
12572.6%
 
15862.2%
 
15062.2%
 
17362.2%
 
13262.2%
 
14262.2%
 
15262.2%
 
14351.9%
 
15751.9%
 
16551.9%
 
14751.9%
 
17851.9%
 
15651.9%
 
16151.9%
 
15451.9%
 
17051.9%
 
14051.9%
 
16851.9%
 
12641.5%
 
15141.5%
 
17941.5%
 
Other values (65)12646.7%
 
ValueCountFrequency (%) 
7110.4%
 
8810.4%
 
9510.4%
 
9620.7%
 
9710.4%
 
9910.4%
 
10320.7%
 
10531.1%
 
10610.4%
 
10820.7%
 
ValueCountFrequency (%) 
20210.4%
 
19510.4%
 
19410.4%
 
19210.4%
 
19010.4%
 
18810.4%
 
18710.4%
 
18620.7%
 
18510.4%
 
18410.4%
 
Distinct count2
Unique (%)0.7%
Missing0
Missing (%)0.0%
Memory size2.2 KiB
0
181
1
89
ValueCountFrequency (%) 
018167.0%
 
18933.0%
 

oldpeak
Real number (ℝ≥0)

ZEROS

Distinct count39
Unique (%)14.4%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean1.05
Minimum0.0
Maximum6.2
Zeros85
Zeros (%)31.5%
Memory size2.2 KiB
2020-08-25T01:24:41.853238image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median0.8
Q31.6
95-th percentile3.31
Maximum6.2
Range6.2
Interquartile range (IQR)1.6

Descriptive statistics

Standard deviation1.145209839
Coefficient of variation (CV)1.090676038
Kurtosis1.759316529
Mean1.05
Median Absolute Deviation (MAD)0.8
Skewness1.262893211
Sum283.5
Variance1.311505576
2020-08-25T01:24:41.966313image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
Histogram with fixed size bins (bins=10)
ValueCountFrequency (%) 
08531.5%
 
1.2145.2%
 
1.4134.8%
 
1124.4%
 
0.6124.4%
 
0.2114.1%
 
0.8114.1%
 
1.6114.1%
 
1.8103.7%
 
283.0%
 
0.483.0%
 
2.662.2%
 
0.162.2%
 
1.951.9%
 
0.551.9%
 
1.551.9%
 
2.241.5%
 
341.5%
 
3.641.5%
 
2.841.5%
 
0.331.1%
 
0.931.1%
 
2.431.1%
 
2.520.7%
 
3.220.7%
 
Other values (14)197.0%
 
ValueCountFrequency (%) 
08531.5%
 
0.162.2%
 
0.2114.1%
 
0.331.1%
 
0.483.0%
 
0.551.9%
 
0.6124.4%
 
0.710.4%
 
0.8114.1%
 
0.931.1%
 
ValueCountFrequency (%) 
6.210.4%
 
5.610.4%
 
4.220.7%
 
420.7%
 
3.810.4%
 
3.641.5%
 
3.510.4%
 
3.420.7%
 
3.220.7%
 
3.110.4%
 

slope
Categorical

Distinct count3
Unique (%)1.1%
Missing0
Missing (%)0.0%
Memory size2.2 KiB
1
130
2
122
3
 
18
ValueCountFrequency (%) 
113048.1%
 
212245.2%
 
3186.7%
 
2020-08-25T01:24:42.101544image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Length

Max length3
Median length3
Mean length3
Min length3

Overview of Unicode Properties

Unique unicode characters5
Unique unicode categories (?)2
Unique unicode scripts (?)1
Unique unicode blocks (?)1
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Most occurring characters

ValueCountFrequency (%) 
.27033.3%
 
027033.3%
 
113016.0%
 
212215.1%
 
3182.2%
 

Most occurring categories

ValueCountFrequency (%) 
Decimal Number54066.7%
 
Other Punctuation27033.3%
 

Most frequent Decimal Number characters

ValueCountFrequency (%) 
027050.0%
 
113024.1%
 
212222.6%
 
3183.3%
 

Most frequent Other Punctuation characters

ValueCountFrequency (%) 
.270100.0%
 

Most occurring scripts

ValueCountFrequency (%) 
Common810100.0%
 

Most frequent Common characters

ValueCountFrequency (%) 
.27033.3%
 
027033.3%
 
113016.0%
 
212215.1%
 
3182.2%
 

Most occurring blocks

ValueCountFrequency (%) 
ASCII810100.0%
 

Most frequent ASCII characters

ValueCountFrequency (%) 
.27033.3%
 
027033.3%
 
113016.0%
 
212215.1%
 
3182.2%
 
Distinct count4
Unique (%)1.5%
Missing0
Missing (%)0.0%
Memory size2.2 KiB
0
160
1
58
2
33
3
 
19
ValueCountFrequency (%) 
016059.3%
 
15821.5%
 
23312.2%
 
3197.0%
 
2020-08-25T01:24:42.230259image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Length

Max length3
Median length3
Mean length3
Min length3

Overview of Unicode Properties

Unique unicode characters5
Unique unicode categories (?)2
Unique unicode scripts (?)1
Unique unicode blocks (?)1
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Most occurring characters

ValueCountFrequency (%) 
043053.1%
 
.27033.3%
 
1587.2%
 
2334.1%
 
3192.3%
 

Most occurring categories

ValueCountFrequency (%) 
Decimal Number54066.7%
 
Other Punctuation27033.3%
 

Most frequent Decimal Number characters

ValueCountFrequency (%) 
043079.6%
 
15810.7%
 
2336.1%
 
3193.5%
 

Most frequent Other Punctuation characters

ValueCountFrequency (%) 
.270100.0%
 

Most occurring scripts

ValueCountFrequency (%) 
Common810100.0%
 

Most frequent Common characters

ValueCountFrequency (%) 
043053.1%
 
.27033.3%
 
1587.2%
 
2334.1%
 
3192.3%
 

Most occurring blocks

ValueCountFrequency (%) 
ASCII810100.0%
 

Most frequent ASCII characters

ValueCountFrequency (%) 
043053.1%
 
.27033.3%
 
1587.2%
 
2334.1%
 
3192.3%
 

thal
Categorical

Distinct count3
Unique (%)1.1%
Missing0
Missing (%)0.0%
Memory size2.2 KiB
3
152
7
104
6
 
14
ValueCountFrequency (%) 
315256.3%
 
710438.5%
 
6145.2%
 
2020-08-25T01:24:42.357490image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Length

Max length3
Median length3
Mean length3
Min length3

Overview of Unicode Properties

Unique unicode characters5
Unique unicode categories (?)2
Unique unicode scripts (?)1
Unique unicode blocks (?)1
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Most occurring characters

ValueCountFrequency (%) 
.27033.3%
 
027033.3%
 
315218.8%
 
710412.8%
 
6141.7%
 

Most occurring categories

ValueCountFrequency (%) 
Decimal Number54066.7%
 
Other Punctuation27033.3%
 

Most frequent Decimal Number characters

ValueCountFrequency (%) 
027050.0%
 
315228.1%
 
710419.3%
 
6142.6%
 

Most frequent Other Punctuation characters

ValueCountFrequency (%) 
.270100.0%
 

Most occurring scripts

ValueCountFrequency (%) 
Common810100.0%
 

Most frequent Common characters

ValueCountFrequency (%) 
.27033.3%
 
027033.3%
 
315218.8%
 
710412.8%
 
6141.7%
 

Most occurring blocks

ValueCountFrequency (%) 
ASCII810100.0%
 

Most frequent ASCII characters

ValueCountFrequency (%) 
.27033.3%
 
027033.3%
 
315218.8%
 
710412.8%
 
6141.7%
 

target
Boolean

Distinct count2
Unique (%)0.7%
Missing0
Missing (%)0.0%
Memory size2.2 KiB
0
150
1
120
ValueCountFrequency (%) 
015055.6%
 
112044.4%
 

Interactions

2020-08-25T01:24:36.893474image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:24:37.005119image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:24:37.135995image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:24:37.252894image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:24:37.372710image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:24:37.487622image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:24:37.606963image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:24:37.733488image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:24:37.847255image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:24:37.972728image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:24:38.097225image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:24:38.205199image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:24:38.317747image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:24:38.421457image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:24:38.538698image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:24:38.653075image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:24:38.778171image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:24:38.914096image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:24:39.036261image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:24:39.169748image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:24:39.295912image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:24:39.411535image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:24:39.535315image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:24:39.656114image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:24:39.971290image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Correlations

2020-08-25T01:24:42.485583image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Pearson's r

The Pearson's correlation coefficient (r) is a measure of linear correlation between two variables. It's value lies between -1 and +1, -1 indicating total negative linear correlation, 0 indicating no linear correlation and 1 indicating total positive linear correlation. Furthermore, r is invariant under separate changes in location and scale of the two variables, implying that for a linear function the angle to the x-axis does not affect r.

To calculate r for two variables X and Y, one divides the covariance of X and Y by the product of their standard deviations.
2020-08-25T01:24:42.772203image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Spearman's ρ

The Spearman's rank correlation coefficient (ρ) is a measure of monotonic correlation between two variables, and is therefore better in catching nonlinear monotonic correlations than Pearson's r. It's value lies between -1 and +1, -1 indicating total negative monotonic correlation, 0 indicating no monotonic correlation and 1 indicating total positive monotonic correlation.

To calculate ρ for two variables X and Y, one divides the covariance of the rank variables of X and Y by the product of their standard deviations.
2020-08-25T01:24:43.058123image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Kendall's τ

Similarly to Spearman's rank correlation coefficient, the Kendall rank correlation coefficient (τ) measures ordinal association between two variables. It's value lies between -1 and +1, -1 indicating total negative correlation, 0 indicating no correlation and 1 indicating total positive correlation.

To calculate τ for two variables X and Y, one determines the number of concordant and discordant pairs of observations. τ is given by the number of concordant pairs minus the discordant pairs divided by the total number of pairs.
2020-08-25T01:24:43.349343image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Phik (φk)

Phik (φk) is a new and practical correlation coefficient that works consistently between categorical, ordinal and interval variables, captures non-linear dependency and reverts to the Pearson correlation coefficient in case of a bivariate normal input distribution. There is extensive documentation available here.
2020-08-25T01:24:43.808882image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Cramér's V (φc)

Cramér's V is an association measure for nominal random variables. The coefficient ranges from 0 to 1, with 0 indicating independence and 1 indicating perfect association. The empirical estimators used for Cramér's V have been proved to be biased, even for large samples. We use a bias-corrected measure that has been proposed by Bergsma in 2013 that can be found here.

Missing values

2020-08-25T01:24:40.225279image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:24:40.561456image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Sample

First rows

agesexchestresting_blood_pressureserum_cholestoralfasting_blood_sugarresting_electrocardiographic_resultsmaximum_heart_rate_achievedexercise_induced_anginaoldpeakslopenumber_of_major_vesselsthaltarget
070.01.04.0130.0322.00.02.0109.00.02.42.03.03.01
167.00.03.0115.0564.00.02.0160.00.01.62.00.07.00
257.01.02.0124.0261.00.00.0141.00.00.31.00.07.01
364.01.04.0128.0263.00.00.0105.01.00.22.01.07.00
474.00.02.0120.0269.00.02.0121.01.00.21.01.03.00
565.01.04.0120.0177.00.00.0140.00.00.41.00.07.00
656.01.03.0130.0256.01.02.0142.01.00.62.01.06.01
759.01.04.0110.0239.00.02.0142.01.01.22.01.07.01
860.01.04.0140.0293.00.02.0170.00.01.22.02.07.01
963.00.04.0150.0407.00.02.0154.00.04.02.03.07.01

Last rows

agesexchestresting_blood_pressureserum_cholestoralfasting_blood_sugarresting_electrocardiographic_resultsmaximum_heart_rate_achievedexercise_induced_anginaoldpeakslopenumber_of_major_vesselsthaltarget
26058.00.03.0120.0340.00.00.0172.00.00.01.00.03.00
26160.01.04.0130.0206.00.02.0132.01.02.42.02.07.01
26258.01.02.0120.0284.00.02.0160.00.01.82.00.03.01
26349.01.02.0130.0266.00.00.0171.00.00.61.00.03.00
26448.01.02.0110.0229.00.00.0168.00.01.03.00.07.01
26552.01.03.0172.0199.01.00.0162.00.00.51.00.07.00
26644.01.02.0120.0263.00.00.0173.00.00.01.00.07.00
26756.00.02.0140.0294.00.02.0153.00.01.32.00.03.00
26857.01.04.0140.0192.00.00.0148.00.00.42.00.06.00
26967.01.04.0160.0286.00.02.0108.01.01.52.03.03.01