Overview

Dataset statistics

Number of variables14
Number of observations303
Missing cells0
Missing cells (%)0.0%
Duplicate rows0
Duplicate rows (%)0.0%
Total size in memory33.3 KiB
Average record size in memory112.4 B

Variable types

NUM7
CAT4
BOOL3

Reproduction

Analysis started2020-08-25 01:16:57.131299
Analysis finished2020-08-25 01:17:04.907579
Duration7.78 seconds
Versionpandas-profiling v2.8.0
Command linepandas_profiling --config_file config.yaml [YOUR_FILE.csv]
Download configurationconfig.yaml

Warnings

oldpeak has 99 (32.7%) zeros Zeros
ca has 176 (58.1%) zeros Zeros
target has 164 (54.1%) zeros Zeros

Variables

age
Real number (ℝ≥0)

Distinct count41
Unique (%)13.5%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean54.43894389438944
Minimum29.0
Maximum77.0
Zeros0
Zeros (%)0.0%
Memory size2.5 KiB
2020-08-25T01:17:04.951522image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Quantile statistics

Minimum29
5-th percentile40
Q148
median56
Q361
95-th percentile68
Maximum77
Range48
Interquartile range (IQR)13

Descriptive statistics

Standard deviation9.038662442
Coefficient of variation (CV)0.1660330233
Kurtosis-0.5233827452
Mean54.43894389
Median Absolute Deviation (MAD)6
Skewness-0.2090604688
Sum16495
Variance81.69741875
2020-08-25T01:17:05.049099image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
Histogram with fixed size bins (bins=10)
ValueCountFrequency (%) 
58196.3%
 
57175.6%
 
54165.3%
 
59144.6%
 
52134.3%
 
60124.0%
 
51124.0%
 
56113.6%
 
62113.6%
 
44113.6%
 
41103.3%
 
64103.3%
 
6793.0%
 
6393.0%
 
4282.6%
 
4382.6%
 
5382.6%
 
6582.6%
 
5582.6%
 
6182.6%
 
4582.6%
 
4672.3%
 
6672.3%
 
5072.3%
 
4872.3%
 
Other values (16)4514.9%
 
ValueCountFrequency (%) 
2910.3%
 
3420.7%
 
3541.3%
 
3720.7%
 
3820.7%
 
3941.3%
 
4031.0%
 
41103.3%
 
4282.6%
 
4382.6%
 
ValueCountFrequency (%) 
7710.3%
 
7610.3%
 
7410.3%
 
7131.0%
 
7041.3%
 
6931.0%
 
6841.3%
 
6793.0%
 
6672.3%
 
6582.6%
 

sex
Boolean

Distinct count2
Unique (%)0.7%
Missing0
Missing (%)0.0%
Memory size2.5 KiB
1
206
0
97
ValueCountFrequency (%) 
120668.0%
 
09732.0%
 

cp
Categorical

Distinct count4
Unique (%)1.3%
Missing0
Missing (%)0.0%
Memory size2.5 KiB
4
144
3
86
2
50
1
 
23
ValueCountFrequency (%) 
414447.5%
 
38628.4%
 
25016.5%
 
1237.6%
 
2020-08-25T01:17:05.188276image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Length

Max length1
Median length1
Mean length1
Min length1

Overview of Unicode Properties

Unique unicode characters4
Unique unicode categories (?)1
Unique unicode scripts (?)1
Unique unicode blocks (?)1
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Most occurring characters

ValueCountFrequency (%) 
414447.5%
 
38628.4%
 
25016.5%
 
1237.6%
 

Most occurring categories

ValueCountFrequency (%) 
Decimal Number303100.0%
 

Most frequent Decimal Number characters

ValueCountFrequency (%) 
414447.5%
 
38628.4%
 
25016.5%
 
1237.6%
 

Most occurring scripts

ValueCountFrequency (%) 
Common303100.0%
 

Most frequent Common characters

ValueCountFrequency (%) 
414447.5%
 
38628.4%
 
25016.5%
 
1237.6%
 

Most occurring blocks

ValueCountFrequency (%) 
ASCII303100.0%
 

Most frequent ASCII characters

ValueCountFrequency (%) 
414447.5%
 
38628.4%
 
25016.5%
 
1237.6%
 

trestbps
Real number (ℝ≥0)

Distinct count50
Unique (%)16.5%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean131.68976897689768
Minimum94.0
Maximum200.0
Zeros0
Zeros (%)0.0%
Memory size2.5 KiB
2020-08-25T01:17:05.294921image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Quantile statistics

Minimum94
5-th percentile108
Q1120
median130
Q3140
95-th percentile160
Maximum200
Range106
Interquartile range (IQR)20

Descriptive statistics

Standard deviation17.59974773
Coefficient of variation (CV)0.1336455206
Kurtosis0.8800738686
Mean131.689769
Median Absolute Deviation (MAD)10
Skewness0.7060346498
Sum39902
Variance309.7511201
2020-08-25T01:17:05.395670image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
Histogram with fixed size bins (bins=10)
ValueCountFrequency (%) 
1203712.2%
 
1303611.9%
 
1403210.6%
 
110196.3%
 
150175.6%
 
138124.0%
 
128124.0%
 
125113.6%
 
160113.6%
 
11293.0%
 
13282.6%
 
11872.3%
 
12462.0%
 
13562.0%
 
10862.0%
 
15251.7%
 
13451.7%
 
14551.7%
 
10041.3%
 
17041.3%
 
12241.3%
 
13631.0%
 
10531.0%
 
11531.0%
 
14231.0%
 
Other values (25)3511.6%
 
ValueCountFrequency (%) 
9420.7%
 
10041.3%
 
10110.3%
 
10220.7%
 
10410.3%
 
10531.0%
 
10610.3%
 
10862.0%
 
110196.3%
 
11293.0%
 
ValueCountFrequency (%) 
20010.3%
 
19210.3%
 
18031.0%
 
17820.7%
 
17410.3%
 
17210.3%
 
17041.3%
 
16510.3%
 
16410.3%
 
160113.6%
 

chol
Real number (ℝ≥0)

Distinct count152
Unique (%)50.2%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean246.69306930693068
Minimum126.0
Maximum564.0
Zeros0
Zeros (%)0.0%
Memory size2.5 KiB
2020-08-25T01:17:05.503719image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Quantile statistics

Minimum126
5-th percentile175.1
Q1211
median241
Q3275
95-th percentile326.9
Maximum564
Range438
Interquartile range (IQR)64

Descriptive statistics

Standard deviation51.77691754
Coefficient of variation (CV)0.209883957
Kurtosis4.491724287
Mean246.6930693
Median Absolute Deviation (MAD)32
Skewness1.135503153
Sum74748
Variance2680.84919
2020-08-25T01:17:05.590832image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
Histogram with fixed size bins (bins=10)
ValueCountFrequency (%) 
23462.0%
 
20462.0%
 
19762.0%
 
26951.7%
 
21251.7%
 
25451.7%
 
17741.3%
 
24341.3%
 
22641.3%
 
28241.3%
 
21141.3%
 
23941.3%
 
23341.3%
 
24041.3%
 
24531.0%
 
27431.0%
 
23131.0%
 
20131.0%
 
24931.0%
 
24431.0%
 
26331.0%
 
28331.0%
 
28831.0%
 
22031.0%
 
22331.0%
 
Other values (127)20567.7%
 
ValueCountFrequency (%) 
12610.3%
 
13110.3%
 
14110.3%
 
14920.7%
 
15710.3%
 
16010.3%
 
16410.3%
 
16610.3%
 
16710.3%
 
16810.3%
 
ValueCountFrequency (%) 
56410.3%
 
41710.3%
 
40910.3%
 
40710.3%
 
39410.3%
 
36010.3%
 
35410.3%
 
35310.3%
 
34210.3%
 
34110.3%
 

fbs
Boolean

Distinct count2
Unique (%)0.7%
Missing0
Missing (%)0.0%
Memory size2.5 KiB
0
258
1
 
45
ValueCountFrequency (%) 
025885.1%
 
14514.9%
 

restecg
Categorical

Distinct count3
Unique (%)1.0%
Missing0
Missing (%)0.0%
Memory size2.5 KiB
0
151
2
148
1
 
4
ValueCountFrequency (%) 
015149.8%
 
214848.8%
 
141.3%
 
2020-08-25T01:17:05.886670image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Length

Max length1
Median length1
Mean length1
Min length1

Overview of Unicode Properties

Unique unicode characters3
Unique unicode categories (?)1
Unique unicode scripts (?)1
Unique unicode blocks (?)1
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Most occurring characters

ValueCountFrequency (%) 
015149.8%
 
214848.8%
 
141.3%
 

Most occurring categories

ValueCountFrequency (%) 
Decimal Number303100.0%
 

Most frequent Decimal Number characters

ValueCountFrequency (%) 
015149.8%
 
214848.8%
 
141.3%
 

Most occurring scripts

ValueCountFrequency (%) 
Common303100.0%
 

Most frequent Common characters

ValueCountFrequency (%) 
015149.8%
 
214848.8%
 
141.3%
 

Most occurring blocks

ValueCountFrequency (%) 
ASCII303100.0%
 

Most frequent ASCII characters

ValueCountFrequency (%) 
015149.8%
 
214848.8%
 
141.3%
 

thalach
Real number (ℝ≥0)

Distinct count91
Unique (%)30.0%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean149.6072607260726
Minimum71.0
Maximum202.0
Zeros0
Zeros (%)0.0%
Memory size2.5 KiB
2020-08-25T01:17:05.993186image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Quantile statistics

Minimum71
5-th percentile108.1
Q1133.5
median153
Q3166
95-th percentile181.9
Maximum202
Range131
Interquartile range (IQR)32.5

Descriptive statistics

Standard deviation22.87500328
Coefficient of variation (CV)0.152900355
Kurtosis-0.05354095895
Mean149.6072607
Median Absolute Deviation (MAD)15
Skewness-0.5374486699
Sum45331
Variance523.2657749
2020-08-25T01:17:06.099232image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
Histogram with fixed size bins (bins=10)
ValueCountFrequency (%) 
162113.6%
 
16093.0%
 
16393.0%
 
15282.6%
 
15072.3%
 
17372.3%
 
14372.3%
 
13272.3%
 
14472.3%
 
12572.3%
 
17272.3%
 
14062.0%
 
16162.0%
 
15662.0%
 
15862.0%
 
14262.0%
 
16962.0%
 
16851.7%
 
18251.7%
 
15751.7%
 
17451.7%
 
14751.7%
 
16551.7%
 
17851.7%
 
17051.7%
 
Other values (66)14146.5%
 
ValueCountFrequency (%) 
7110.3%
 
8810.3%
 
9010.3%
 
9510.3%
 
9620.7%
 
9710.3%
 
9910.3%
 
10320.7%
 
10531.0%
 
10610.3%
 
ValueCountFrequency (%) 
20210.3%
 
19510.3%
 
19410.3%
 
19210.3%
 
19010.3%
 
18810.3%
 
18710.3%
 
18620.7%
 
18510.3%
 
18410.3%
 

exang
Boolean

Distinct count2
Unique (%)0.7%
Missing0
Missing (%)0.0%
Memory size2.5 KiB
0
204
1
99
ValueCountFrequency (%) 
020467.3%
 
19932.7%
 

oldpeak
Real number (ℝ≥0)

ZEROS

Distinct count40
Unique (%)13.2%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean1.0396039603960396
Minimum0.0
Maximum6.2
Zeros99
Zeros (%)32.7%
Memory size2.5 KiB
2020-08-25T01:17:06.219499image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median0.8
Q31.6
95-th percentile3.4
Maximum6.2
Range6.2
Interquartile range (IQR)1.6

Descriptive statistics

Standard deviation1.161075022
Coefficient of variation (CV)1.116843593
Kurtosis1.575813073
Mean1.03960396
Median Absolute Deviation (MAD)0.8
Skewness1.269719931
Sum315
Variance1.348095207
2020-08-25T01:17:06.330914image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
Histogram with fixed size bins (bins=10)
ValueCountFrequency (%) 
09932.7%
 
1.2175.6%
 
1144.6%
 
0.6144.6%
 
0.8134.3%
 
1.4134.3%
 
0.2124.0%
 
1.6113.6%
 
1.8103.3%
 
293.0%
 
0.493.0%
 
0.172.3%
 
2.862.0%
 
2.662.0%
 
0.551.7%
 
351.7%
 
1.551.7%
 
1.951.7%
 
2.241.3%
 
3.641.3%
 
3.431.0%
 
0.331.0%
 
2.431.0%
 
0.931.0%
 
431.0%
 
Other values (15)206.6%
 
ValueCountFrequency (%) 
09932.7%
 
0.172.3%
 
0.2124.0%
 
0.331.0%
 
0.493.0%
 
0.551.7%
 
0.6144.6%
 
0.710.3%
 
0.8134.3%
 
0.931.0%
 
ValueCountFrequency (%) 
6.210.3%
 
5.610.3%
 
4.410.3%
 
4.220.7%
 
431.0%
 
3.810.3%
 
3.641.3%
 
3.510.3%
 
3.431.0%
 
3.220.7%
 

slope
Categorical

Distinct count3
Unique (%)1.0%
Missing0
Missing (%)0.0%
Memory size2.5 KiB
1
142
2
140
3
 
21
ValueCountFrequency (%) 
114246.9%
 
214046.2%
 
3216.9%
 
2020-08-25T01:17:06.461073image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Length

Max length1
Median length1
Mean length1
Min length1

Overview of Unicode Properties

Unique unicode characters3
Unique unicode categories (?)1
Unique unicode scripts (?)1
Unique unicode blocks (?)1
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Most occurring characters

ValueCountFrequency (%) 
114246.9%
 
214046.2%
 
3216.9%
 

Most occurring categories

ValueCountFrequency (%) 
Decimal Number303100.0%
 

Most frequent Decimal Number characters

ValueCountFrequency (%) 
114246.9%
 
214046.2%
 
3216.9%
 

Most occurring scripts

ValueCountFrequency (%) 
Common303100.0%
 

Most frequent Common characters

ValueCountFrequency (%) 
114246.9%
 
214046.2%
 
3216.9%
 

Most occurring blocks

ValueCountFrequency (%) 
ASCII303100.0%
 

Most frequent ASCII characters

ValueCountFrequency (%) 
114246.9%
 
214046.2%
 
3216.9%
 

ca
Real number (ℝ≥0)

ZEROS

Distinct count5
Unique (%)1.7%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean0.7161716171617162
Minimum0
Maximum4
Zeros176
Zeros (%)58.1%
Memory size2.5 KiB
2020-08-25T01:17:06.567000image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median0
Q31
95-th percentile3
Maximum4
Range4
Interquartile range (IQR)1

Descriptive statistics

Standard deviation1.005927398
Coefficient of variation (CV)1.40458987
Kurtosis0.793918781
Mean0.7161716172
Median Absolute Deviation (MAD)0
Skewness1.300488091
Sum217
Variance1.011889931
2020-08-25T01:17:06.674389image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
Histogram with fixed size bins (bins=10)
ValueCountFrequency (%) 
017658.1%
 
16521.5%
 
23812.5%
 
3206.6%
 
441.3%
 
ValueCountFrequency (%) 
017658.1%
 
16521.5%
 
23812.5%
 
3206.6%
 
441.3%
 
ValueCountFrequency (%) 
441.3%
 
3206.6%
 
23812.5%
 
16521.5%
 
017658.1%
 

thal
Categorical

Distinct count4
Unique (%)1.3%
Missing0
Missing (%)0.0%
Memory size2.5 KiB
0
166
2
117
1
 
18
3
 
2
ValueCountFrequency (%) 
016654.8%
 
211738.6%
 
1185.9%
 
320.7%
 
2020-08-25T01:17:06.830167image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Length

Max length1
Median length1
Mean length1
Min length1

Overview of Unicode Properties

Unique unicode characters4
Unique unicode categories (?)1
Unique unicode scripts (?)1
Unique unicode blocks (?)1
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Most occurring characters

ValueCountFrequency (%) 
016654.8%
 
211738.6%
 
1185.9%
 
320.7%
 

Most occurring categories

ValueCountFrequency (%) 
Decimal Number303100.0%
 

Most frequent Decimal Number characters

ValueCountFrequency (%) 
016654.8%
 
211738.6%
 
1185.9%
 
320.7%
 

Most occurring scripts

ValueCountFrequency (%) 
Common303100.0%
 

Most frequent Common characters

ValueCountFrequency (%) 
016654.8%
 
211738.6%
 
1185.9%
 
320.7%
 

Most occurring blocks

ValueCountFrequency (%) 
ASCII303100.0%
 

Most frequent ASCII characters

ValueCountFrequency (%) 
016654.8%
 
211738.6%
 
1185.9%
 
320.7%
 

target
Real number (ℝ≥0)

ZEROS

Distinct count5
Unique (%)1.7%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean0.9372937293729373
Minimum0
Maximum4
Zeros164
Zeros (%)54.1%
Memory size2.5 KiB
2020-08-25T01:17:06.933026image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median0
Q32
95-th percentile3
Maximum4
Range4
Interquartile range (IQR)2

Descriptive statistics

Standard deviation1.228535688
Coefficient of variation (CV)1.310726456
Kurtosis-0.1387539879
Mean0.9372937294
Median Absolute Deviation (MAD)0
Skewness1.058495607
Sum284
Variance1.509299937
2020-08-25T01:17:07.044972image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
Histogram with fixed size bins (bins=10)
ValueCountFrequency (%) 
016454.1%
 
15518.2%
 
23611.9%
 
33511.6%
 
4134.3%
 
ValueCountFrequency (%) 
016454.1%
 
15518.2%
 
23611.9%
 
33511.6%
 
4134.3%
 
ValueCountFrequency (%) 
4134.3%
 
33511.6%
 
23611.9%
 
15518.2%
 
016454.1%
 

Interactions

2020-08-25T01:16:57.727527image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:16:58.116163image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:16:58.231594image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:16:58.338687image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:16:58.456851image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:16:58.573336image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:16:58.708878image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:16:58.847779image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:16:58.968770image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:16:59.091881image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:16:59.204297image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:16:59.326341image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:16:59.447509image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:16:59.578038image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:16:59.706311image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:16:59.816194image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:16:59.928981image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:17:00.031744image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:17:00.149525image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:17:00.266513image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:17:00.383111image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:17:00.502495image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:17:00.621143image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:17:00.740709image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:17:00.852427image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:17:00.975653image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:17:01.102329image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:17:01.234509image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:17:01.367457image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:17:01.483780image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:17:01.611559image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:17:01.729264image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:17:02.037454image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:17:02.163940image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:17:02.295522image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:17:02.430307image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:17:02.558472image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:17:02.693923image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:17:02.820831image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:17:02.961072image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:17:03.094301image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:17:03.238032image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:17:03.390183image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:17:03.531424image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:17:03.668847image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:17:03.790838image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:17:03.928298image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:17:04.060200image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:17:04.208468image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Correlations

2020-08-25T01:17:07.185642image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Pearson's r

The Pearson's correlation coefficient (r) is a measure of linear correlation between two variables. It's value lies between -1 and +1, -1 indicating total negative linear correlation, 0 indicating no linear correlation and 1 indicating total positive linear correlation. Furthermore, r is invariant under separate changes in location and scale of the two variables, implying that for a linear function the angle to the x-axis does not affect r.

To calculate r for two variables X and Y, one divides the covariance of X and Y by the product of their standard deviations.
2020-08-25T01:17:07.433986image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Spearman's ρ

The Spearman's rank correlation coefficient (ρ) is a measure of monotonic correlation between two variables, and is therefore better in catching nonlinear monotonic correlations than Pearson's r. It's value lies between -1 and +1, -1 indicating total negative monotonic correlation, 0 indicating no monotonic correlation and 1 indicating total positive monotonic correlation.

To calculate ρ for two variables X and Y, one divides the covariance of the rank variables of X and Y by the product of their standard deviations.
2020-08-25T01:17:07.678913image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Kendall's τ

Similarly to Spearman's rank correlation coefficient, the Kendall rank correlation coefficient (τ) measures ordinal association between two variables. It's value lies between -1 and +1, -1 indicating total negative correlation, 0 indicating no correlation and 1 indicating total positive correlation.

To calculate τ for two variables X and Y, one determines the number of concordant and discordant pairs of observations. τ is given by the number of concordant pairs minus the discordant pairs divided by the total number of pairs.
2020-08-25T01:17:07.933494image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Phik (φk)

Phik (φk) is a new and practical correlation coefficient that works consistently between categorical, ordinal and interval variables, captures non-linear dependency and reverts to the Pearson correlation coefficient in case of a bivariate normal input distribution. There is extensive documentation available here.
2020-08-25T01:17:08.141785image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Cramér's V (φc)

Cramér's V is an association measure for nominal random variables. The coefficient ranges from 0 to 1, with 0 indicating independence and 1 indicating perfect association. The empirical estimators used for Cramér's V have been proved to be biased, even for large samples. We use a bias-corrected measure that has been proposed by Bergsma in 2013 that can be found here.

Missing values

2020-08-25T01:17:04.469113image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/
2020-08-25T01:17:04.780202image/svg+xmlMatplotlib v3.3.1, https://matplotlib.org/

Sample

First rows

agesexcptrestbpscholfbsrestecgthalachexangoldpeakslopecathaltarget
063.011145.0233.012150.002.33010
167.014160.0286.002108.011.52302
267.014120.0229.002129.012.62221
337.013130.0250.000187.003.53000
441.002130.0204.002172.001.41000
556.012120.0236.000178.000.81000
662.004140.0268.002160.003.63203
757.004120.0354.000163.010.61000
863.014130.0254.002147.001.42122
953.014140.0203.012155.013.13021

Last rows

agesexcptrestbpscholfbsrestecgthalachexangoldpeakslopecathaltarget
29363.014140.0187.002144.014.01222
29463.004124.0197.000136.010.02001
29541.012120.0157.000182.000.01000
29659.014164.0176.01290.001.02213
29757.004140.0241.000123.010.22021
29845.011110.0264.000132.001.22021
29968.014144.0193.010141.003.42222
30057.014130.0131.000115.011.22123
30157.002130.0236.002174.000.02101
30238.013138.0175.000173.000.01400